Skip to main content
Log in

Ethylene-insensitive mutants of Nicotiana tabacum exhibit drought stress resistance

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Drought is one of the major environmental stresses that profoundly affect crop growth and yield. The gaseous hormone ethylene is believed to be critical for plant growth and drought tolerance. Based on the dark-grown seedling response to ethylene, a genetic screen for tobacco (Nicotiana tabacum) mutants on medium supplemented with ACC (1-aminocyclopropane-1-carboxylic acid), the precursor of ethylene, was performed. Among the ethylene insensitive mutants that were isolated, drought resistant mutants were subsequently obtained via screening on mannitol-containing medium. Phenotypic analyses revealed that these mutants exhibited enhanced drought resistance, having a higher percentage survival rate under conditions of severe water deficit, and better growth under mannitol osmotic stress. In the mutants, the leaf water loss rate was lowered and the leaf stomatal aperture was decreased. In addition, increases in peroxidase and superoxide dismutase activities and a higher accumulation of total soluble sugar and proline were detected in the mutant plants. The corresponding expression change of tobacco NtAP2 (APETALA2 in Nicotiana tabacum, homologous with AtAP2 from Arabidopsis thaliana) and NtERF (ethylene response factor in N. tabacum) genes was examined in the plants in response to air-drying treatments. Our study provides an applicable approach for the mutant screening of drought resistant plants, and the results suggest a crucial function of ethylene in plant drought tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ali MB, Chun HS, Lee CB (2002) Response of antioxidant enzymes, in rice (Oryza sativa L. cv. Dongjin) under mercury stress. J Plant Biol 45:141–147

    Article  CAS  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  PubMed  Google Scholar 

  • Apelbaum A, Yang SF (1981) Biosynthesis of stress ethylene induced by water deficit. Plant Physiol 68:594–596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartoli CG, Gomez F, Martinez DE, Guiamet JJ (2004) Mitochondria are the main target for oxidative damage in leaves of wheat (Triticum aestivum). J Exp Bot 55:1663–1669

    Article  CAS  PubMed  Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Binder AK, Grammer JC, Herndon MK, Stanton JD, Nilson JH (2012) GnRH regulation of Jun and Atf3 requires calcium, calcineurin, and NFAT. Mol Endocrinol 26(5):873–886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bleecker AB, Estelle MA, Somerville C, Kende H (1988) Insensitivity to ethylene conferred by a dominant mutation in Arabidopsis thaliana. Science 241:1086–1089

    Article  CAS  PubMed  Google Scholar 

  • Bohnert HJ, Nelson DE, Jensen RG (1995) Adaptations to environmental stresses. Plant Cell 7:1099–1111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boutilier K, Offringa R, Sharma VK, Kieft H, Ouellet T, Zhang L, Hattori J, Liu CM, van Lammeren AAM, Miki BLA, Custers JBM, Campagne ML (2002) Ectopic expression of BABY BOOM triggers a conversion from vegetative to embryonic growth. Plant Cell 14:1737–1749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao WH, Liu J, He XJ, Mu RL, Zhou HL, Chen SY, Zhang JS (2007) Modulation of ethylene responses affects plant salt-stress responses. Plant Physiol 143:707–719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao Y, Chen S, Zhang J (2008) Ethylene signaling regulates salt stress response. Plant Signal Behav 3:761–763

    Article  PubMed  PubMed Central  Google Scholar 

  • Cela J, Chang C, Munné-Bosch S (2011) Accumulation of γ- rather than α-tocopherol alters ethylene signaling gene expression in the vte4 mutant of Arabidopsis thaliana. Plant Cell Physiol 52:1389–1400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng MC, Liao PM, Kuo WW, Lin TP (2013) The Arabidopsis ETHYLENE RESPONSE FACTOR1 regulates abiotic stress-responsive gene expression by binding to different cis-acting elements in response to different stress signals. Plant Physiol 162:1566–1582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chinard FP (1952) Photometric estimation of proline and ornithine. J Biol Chem 199:91–95

    CAS  PubMed  Google Scholar 

  • Chuck G, Meeley RB, Hake S (1998) The control of maize spikelet meristem fate by the APETALA/12-like gene indeterminate spikelet l. Genes Dev 12:1145–1154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elliott RC, Betzner AS, Huttner E, Oakes MP, Tucker WQ, Gerentes D, Perez P, Smyth DR (1996) AINTEGUMENTA, an APETALA2-like gene of Arabidopsis with pleiotropic roles in ovule development and floral organ growth. Plant Cell 8:155–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fischer U, Droge-Laser W (2004) Overexpression of NtERF5, a new member of the tobacco ethylene response transcription factor family enhances resistance to tobacco mosaic virus. Mol Plant Microbe Interact 17:1162–1171

    Article  CAS  PubMed  Google Scholar 

  • Foyer CH, Noctor GD, Buchanan B, Dietz KJ, Pfannschmidt T (2009) Redox regulation in photosynthetic organisms: signaling, acclimation and practical implications. Antioxid Redox Signal 11:861–905

    Article  CAS  PubMed  Google Scholar 

  • Gadjev I, Vanderauwera S, Gechev TS, Laloi C, Minkov IN, Shulaev V, Apel K, Inze D, Mittler R, Breusegem FV (2006) Transcriptomic footprints disclose specificity of reactive oxygen species signaling in Arabidopsis. Plant Physiol 141:436–445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gechev TS, Breusegem FV, Stone JM, Denev I, Laloi C (2006) Reactive oxygen species as signals that modulate plant stress responses and programmed cell death. BioEssays 28:1091–1101

    Article  CAS  PubMed  Google Scholar 

  • Guo H, Ecker JR (2004) The ethylene signaling pathway: new insights. Curr Opin Plant Biol 7:40–49

    Article  CAS  PubMed  Google Scholar 

  • Hao DY, Ohme-Takagi M, Sarai A (1998) Unique mode of GCC box recognition by the DNA-binding domain of ethylene-responsive element-binding factor (ERF domain) in plant. J Biol Chem 273:26857–26861

    Article  CAS  PubMed  Google Scholar 

  • Harb A, Krishnan A, Ambavaram MM, Pereira A (2010) Molecular and physiological analysis of drought stress in Arabidopsis reveals early responses leading to acclimation in plant growth. Plant Physiol 154:1254–1271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoekstra PA, Golovina EA, Buitink J (2001) Mechanisms of plant dessication tolerance. Trends Plant Sci 6:431–438

    Article  CAS  PubMed  Google Scholar 

  • Kendrick MD, Chang C (2008) Ethylene signaling: new levels of complexity and regulation. Curr Opin Plant Biol 11:479–485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kilian J, Whitehead D, Horak J, Wanke D, Weinl S, Batistic O, D’Angelo C, Bornberg-Bauer E, Kudla J, Harter K (2007) The AtGenExpress global stress expression data set: protocols, evaluation and model data analysis of UV-B light, drought and cold stress responses. Plant J 50:347–363

    Article  CAS  PubMed  Google Scholar 

  • Lee SB, Lee SJ, Kim SY (2015) AtERF15 is a positive regulator of ABA response. Plant Cell Rep 34:71–81

    Article  CAS  PubMed  Google Scholar 

  • Liu D, Liu X, Meng Y, Sun C, Tang H, Jiang Y, Khan MA, Xue J, Ma N, Gao J (2013) An organ-specific role for ethylene in rose petal expansion during dehydration and rehydration. J Exp Bot 64:2333–2344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McKeon TA, Hoffman NE, Yang SF (1982) The effect of plant hormone pretreatments on ethylene production and synthesis of 1-aminocyclopropane-1-carboxylic acid in water-stressed wheat leaves. Planta 155:437–443

    Article  CAS  PubMed  Google Scholar 

  • McMicheal BL, Jordan WR, Powell RD (1972) An effect of water stress on ethylene production by intact cotton petioles. Plant Physiol 49:658–660

    Article  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  CAS  PubMed  Google Scholar 

  • Ohme-Takagi M, Shinshi H (1995) Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element. Plant Cell 7:173–182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okamuro JK, Caster B, Villarroel R, Van-Montagu M, Jofuku KD (1997) The AP2 domain of APETALA2 defines a large new family of DNA binding proteins in Arabidopsis. Proc Natl Acad Sci USA 94:7076–7081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Onate-Sanchez L, Singh KB (2002) Identification of Arabidopsis ethylene-responsive element binding factors with distinct induction kinetics after pathogen infection. Plant Physiol 128:1313–1322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan Y, Seymour GB, Lu C, Hu ZL, Chen XQ, Chen GP (2012) An ethylene response factor (ERF5) promoting adaptation to drought and salt tolerance in tomato. Plant Cell Rep 31:349–360

    Article  CAS  PubMed  Google Scholar 

  • Peng J, Li Z, Wen X, Li W, Shi H, Yang L, Zhu H, Guo H (2014) Salt-induced stabilization of EIN3/EIL1 confers salinity tolerance by deterring ROS accumulation in Arabidopsis. PLoS Genet 10(10):e1004664. doi:10.1371/journal.pgen.1004664

    Article  PubMed  PubMed Central  Google Scholar 

  • Pierik R, Whitelam GC, Voesenek LACJ, de Kroon H, Visser EJW (2004) Canopy studies on ethylene-insensitive tobacco identify ethylene as a novel element in blue light and plant–plant signalling. Plant J 38:310–319

    Article  CAS  PubMed  Google Scholar 

  • Sakuma Y, Liu Q, Dubouzet JG, Abe H, Shinozaki K, Yamaguchi SK (2002) DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression. Biochem Biophys Res Commun 290:998–1009

    Article  CAS  PubMed  Google Scholar 

  • Seo YJ, Park JB, Cho YJ, Jung C, Seo HS, Park SK, Nahm BH, Song JT (2010) Overexpression of the ethylene responsive factor gene BrERF4 from Brassica rapa increases tolerance to salt and drought in Arabidopsis plants. Mol Cells 30:271–277

    Article  CAS  PubMed  Google Scholar 

  • Sewelam N, Kazan K, Thomas-Hall SR, Kidd BN, Manners JM, Schenk PM (2013) Ethylene response factor 6 is a regulator of reactive oxygen species signaling in Arabidopsis. PLoS ONE 8(8):e70289. doi:10.1371/journal.pone.0070289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi H, Wang Y, Cheng Z, Ye T, Chan Z (2012a) Analysis of natural variation in bermudagrass (Cynodon dactylon) reveals physiological responses underlying drought tolerance. PLoS ONE 7(12):e53422. doi:10.1371/journal.pone.0053422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi Y, Tian S, Hou L, Huang X, Zhang X, Guo H, Yang S (2012b) Ethylene signaling negatively regulates freezing tolerance by repressing expression of CBF and type-A ARR genes in Arabidopsis. Plant Cell 24:2578–2595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K, Seki M (2003) Regulatory network of gene expression in the drought and cold stress responses. Curr Opin Plant Biol 6(5):410–417

    Article  CAS  PubMed  Google Scholar 

  • Tang MJ, Lu SY, Jing YX, Zhou XJ, Sun JW, Shen SH (2005) Isolation and identification of a cold-inducible gene encoding a putative DRE-binding transcription factor from Festuca arundinacea. Plant Physiol Biochem 43:233–239

    Article  CAS  PubMed  Google Scholar 

  • Tournier B, Sanchez-Ballesta MT, Jones B, Pesquet E, Regad F, Latche A, Pech JC, Bouzayen M (2003) New members of the tomato ERF family show specific expression pattern and diverse DNA binding capacity to the GCC box element. FEBS Lett 550:149–154

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Huang Z, Chen Q, Zhang Z, Zhang H, Wu Y, Huang D, Huang R (2004) Ectopic over-expression of tomato JERF3 in tobacco activates downstream gene expression and enhances salt tolerance. Plant Mol Biol 55:183–192

    Article  CAS  PubMed  Google Scholar 

  • Wang F, Cui X, Sun Y, Dong CH (2013) Ethylene signaling and regulation in plant growth and stress responses. Plant Cell Rep 32:1099–1109

    Article  CAS  PubMed  Google Scholar 

  • Watanabe S, Kojima K, Ide Y, Sasaki S (2000) Effects of saline and osmotic stress on proline and sugar accumulation in Populus euphratica in vitro. Plant Cell, Tissue Organ Cult 63:199–206

    Article  CAS  Google Scholar 

  • Wu L, Zhang Z, Zhang H, Wang XC, Huang R (2008) Transcriptional modulation of ethylene response factor protein JERF3 in the oxidative stress response enhances tolerance of tobacco seedlings to salt, drought, and freezing. Plant Physiol 148:1953–1963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu Q, Wu X, Zhang X, Jiang C, Xiao B, Zhang Y, Wang Y, Liu G (2014) Mapping of two white stem genes in tetraploid common tobacco (Nicotiana tabacum L.). Mol Breeding. doi:10.1007/s11032-014-0097-0

    Google Scholar 

  • Xu Z, Xia L, Chen M, Cheng X, Zhang R, Li L, Zhao Y, Lu Y, Ni Z, Liu L, Qiu Z, Ma Y (2007) Isolation and molecular characterization of the Triticum aestivum L. ethylene-responsive factor 1 (TaERF1) that increases multiple stress tolerance. Plant Mol Biol 65:719–732

    Article  CAS  PubMed  Google Scholar 

  • Xue GP, Loveridge CW (2004) HvDRF1 is involved in abscisic acid-mediated gene regulation in barley and produces two forms of AP2 transcriptional activators, interacting preferably with a CT-rich element. Plant J 37:326–339

    Article  CAS  PubMed  Google Scholar 

  • Yao Y, Dong CH, Yi Y, Li X, Zhang X, Liu J (2014) Regulatory function of AMP1 in ABA biosynthesis and drought resistance in Arabidopsis. J Plant Biol 57:117–126

    Article  CAS  Google Scholar 

  • Zhang G, Chen M, Li L, Xu ZS, Chen XP, Guo JM, Ma YZ (2009) Overexpression of the soybean GmERF3 gene, an AP2/ERF type transcription factor for increased tolerances to salt, drought, and diseases in transgenic tobacco. J Exp Bot 60:3781–3796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Li Z, Quan R, Li G, Wang R, Huang R (2011) An AP2 domain-containing gene, ESE1, targeted by the ethylene signaling component EIN3 is important for the salt response in Arabidopsis. Plant Physiol 157:854–865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Wang J, Zhang R, Huang R (2012) The ethylene response factor AtERF98 enhances tolerance to salt through the transcriptional activation of ascorbic acid synthesis in Arabidopsis. Plant J 71:273–287

    Article  CAS  PubMed  Google Scholar 

  • Zhao XC, Schaller GE (2004) Effect of salt and osmotic stress upon expression of the ethylene receptor ETR1 in Arabidopsis thaliana. FEBS Lett 562:189–192

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Guanshan Liu and Dr. Rongfeng Guo (Tobacco Research Institute, Chinese Academy of Agricultural Sciences) for providing tobacco seeds and help in analyzing of NtAP2 genes. Critical reading by Dr. Caren Chang (University of Maryland) is greatly appreciated. This work was supported by the research project of tobacco mutant screening and characterization to CHD [(110201201004 (JY-04); 110201301005 (JY-05)]. This work was also supported by Taishan Scholar program, National Natural Science Foundation of China to CHD (31370322) and HXP (31400247), and Shandong Natural Science Foundation (ZR2012CM022) to CHD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-Hai Dong.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Wang, F., Zheng, F. et al. Ethylene-insensitive mutants of Nicotiana tabacum exhibit drought stress resistance. Plant Growth Regul 79, 107–117 (2016). https://doi.org/10.1007/s10725-015-0116-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-015-0116-0

Keywords

Navigation