Skip to main content
Log in

Phospholipase Dα from Chorispora bungeana: cloning and partial functional characterization

  • Original Paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Chorispora bungeana Fisch. and C.A. Mey (C. bungeana) is a rare alpine subnival plant species that is highly tolerant to environmental stress. Phospholipase D (PLD) is a key enzyme involved in membrane phospholipid catabolism during plant growth, development and stress responses. We have isolated and partially characterized a full-length cDNA encoding PLDα from the plantlets in vitro of C. bungeana, with the aim of furthering our understanding of the role of PLDα at the molecular level. The C. bungeana PLDα (CbPLDα) was found to encode a 810-amino acid protein with moderate to high nucleotide sequence similarity to previously reported plant PLDα genes. RT-PCR analyses suggested that CbPLDα gene expression is correlated with the CbPLDα activity when C. bungeana plantlets were treated with low temperature (4, 0 and −4 °C). Furthermore, the CbPLDα gene was found to be expressed at high levels in leaf and root tissues. These results indicate that the CbPLDα may play an important role in response to low temperature stresses in C. bungeana.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • An LZ, Liu YH, Feng GN, Feng HY, Chen T, Cheng GD (2000) Studies on ecological properties of altifrigetic subnival vegetation at the source area of Urumqi river. Acta Bot Boreal Occident Sin 20:98–105

    Google Scholar 

  • Ayitu R, Tan DY, Li ZJ, Yao F (1998) The relationship between the structures of vegetative organs in Chorispora bungeana and its environment. J Xinjiang Agric Univ 21:273–277 (in China)

    Google Scholar 

  • Bargmann BO, Munnik T (2006) The role of phospholipase D in plant stress responses. Curr Opin Plant Biol 9:515–522

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle protein–dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Chang JF, Fu XY, An LZ, Xu SJ, Wang JH, Zhang MX, Feng HY, Chen T (2006) Properties of cellular ubiquinone and stress resistance in suspension-cultured cells of Chorispora bungeana during early chilling. Environ Exp Bot 57:116–122

    Article  CAS  Google Scholar 

  • Dawidowicz EA (1987) Dynamics of membrane lipid metabolism and turnover. Annu Rev Biochem 56:43–61

  • De Ridder BP, Crafts-Brandner SJ (2008) Chilling stress response of postemergent cotton seedlings. Physiol Plant 134:430–439

    Article  Google Scholar 

  • De Torres Zabela M, Fernandez-Delmond I, Niittyla T, Sanchez P, Grant M (2002) Differential expression of genes encoding Arabidopsis phospholipases after challenge with virulent or avirulent Pseudomonas isolates. Mol Plant Microbe Interact 15:808–816

    Article  Google Scholar 

  • Exton JHD (1997) Phosphoipase, Enzymology, mechanisms of regulation and function. Physiol Rev 77:303–320

    CAS  PubMed  Google Scholar 

  • Fan L, Zheng S, Cui D, Wang X (1999) Subcellular distribution and tissue expression of phospholipase D alpha, D beta, and D gamma in Arabidopsis. Plant Physiol 119:1371–1378

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fu XY, Chang JF, An LZ, Zhang MX, Xu SJ, Chen T, Liu YH, Xing H, Wang JH (2006) Association of the cold-hardness of Chorispora bungeana with the distribution and accumulation of calcium in the cells and tissues. Environ Exp Bot 55:282–293

    Article  CAS  Google Scholar 

  • Gao Y, Nishikawa H, Badejo AA, Shibata H, Sawa Y, Nakagawa T, Maruta T, Shigeoka S, Smirnoff N, Ishikawa T (2011) Expression of aspartyl protease and C3HC4-type RING zinc finger genes are responsive to ascorbic acid in Arabidopsis thaliana. J Exp Bot 10:3647–3657

    Article  Google Scholar 

  • Gottlin EB, Rudolph AE, Zhao Y, Matthews HR, Dixon JE (1998) Catalytic mechanism of the phospholipase D superfamily proceeds via a covalent phosphohistidine intermediate. Proc Natl Acad Sci USA 95:9202–9207

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Guo FX, Zhang MX, Chen Y, Zhang WH, Xu SJ, Wang JH, An LZ (2006) Relation of several antioxidant enzymes to rapid freezing resistance in suspension cultured cells from alpine Chorispora bungeana. Cryobiology 52:41–250

    Article  Google Scholar 

  • Huang Y, Wu XZ, Qureshi IA, Chen HL (1997) Determination of phosphatidyl choline-specific phospholipase D using enzyme coupling colorimetric method and its application. Acta Acad Med Shanghai 24:343–346

    CAS  Google Scholar 

  • Li W, Li M, Zhang W, Welti R, Wang X (2004) The plasma membrane-bound phospholipase D delta enhances freezing tolerance in Arabidopsis thaliana. Nat Biotechnol 22:427–433

    Article  PubMed  Google Scholar 

  • Mao LC, Pang HQ, Wang GZ, Zhu CG (2007) Phospholipase D and lipoxygenase activity of cucumber fruit in response to chilling stress. Postharv Biol Technol 44:42–47

    Article  CAS  Google Scholar 

  • Merillon JM, Filali M, Duperon P, Montagu M, Chenieux JC, Rideau M (1995) Effect of 2,4-dichlorophenoxyacetic acid and habituation on lipid and protein composition of microsomal membranes from periwinkle cell suspensions. Plant Physiol Biochem 30:443–451

    Google Scholar 

  • Moreno-Pe´rez AJ, Martı´nez-Force E, Garce´s R, Salas JJ (2010) Phospholipase Dα from sunflower (Helianthus annuus): cloning and functional characterization. J Plant Physiol 167:503–511

    Article  Google Scholar 

  • Paliyath G, Droillard MJ (1992) The mechanisms of membrane deterioration and disassembly during senescence. Plant Physiol Biochem 30:789–812

    CAS  Google Scholar 

  • Pinhero RG, Almquist KC, Novotna Z, Paliyath G (2003) Developmental regulation of phospholipase D in tomato fruits. Plant Physiol Biochem 41:223–240

    Article  Google Scholar 

  • Ponting CP, Kerr ID (1996) A novel family of phospholipase D homologues that include phospholipid synthases and putative endonucleases. Protein Sci 5:914–922

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rajashekar CB, Zhoua HE, Zhang Y, Li W, Wang X (2006) Suppression of phospholipase Dα 1 induces freezing tolerance in Arabidopsis: response of cold responsive genes and osmolyte accumulation. J Plant Physiol 163:916–926

    Article  CAS  PubMed  Google Scholar 

  • Sang Y, Zheng S, Li W, Huang B, Wang X (2001) Regulation of plant water loss by manipulating the expression of phospholipase Dα. Plant J 28:135–144

    Article  CAS  PubMed  Google Scholar 

  • Wang X (2000) Multiple forms of phospholipase D in plants: the gene family, catalytic and regulatory properties, and cellular functions. Prog Lipid Res 39:109–149

    Article  CAS  PubMed  Google Scholar 

  • Wang XM (2001) Plant phospholipases. Ann Rev Plant Physiol Plant Mol Biol 52:211–231

    Article  CAS  Google Scholar 

  • Wang XM (2002) Phospholipase D in hormonal and stress signaling. Curr Opin Plant Biol 5:408–414

    Article  CAS  PubMed  Google Scholar 

  • Wang X (2005) Regulatory functions of phospholipase D and phosphatidic acid in plant growth, development, and stress responses. Plant Physiol 139:566–573

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Welti R, Li W, Li M, Sang Y, Biesiada H, Zhou HE (2002) Profiling membrane lipids in plant stress responses: role of phospholipase D in freezing-induced lipid changes in Arabidopsis. J Biol Chem 277:31994–32002

    Article  CAS  PubMed  Google Scholar 

  • Wu JM, Qu T, Chen SY, Zhao ZG, An LZ (2009) Molecular cloning and characterization of a γ-glutamylcysteine synthetase gene from Chorispora bungeana. Protoplasma 235:27–36

    Article  CAS  PubMed  Google Scholar 

  • Xu L, Paulsen AQ, Ryu SB, Wang X (1996) Intracellular localization of phospholipase D in leaves and seedling tissues of castor bean. Plant Physiol 111:101–107

    PubMed Central  CAS  PubMed  Google Scholar 

  • Xue HW, Chen X, Li G (2007) Involvement of phospholipids signaling in plant growth and hormone effects. Curr Opin Plant Biol 10:483–489

    Article  CAS  PubMed  Google Scholar 

  • Yang N, Yue XL, Chen XL, Wu GF, Zhang TG, An LZ (2011) Molecular cloning and partial characterization of a novel phospholipase D gene from Chorispora bungeana. Plant Cell Tiss Organ Cult 108:201–212

    Article  Google Scholar 

  • Yang N, Chen XL, Wu GF, Ding FX, Liu GA, Ding L (2013) Characterization of Phospholipase D from Arabidopsis thaliana Callus in Response to Ent-Kaurene Diterpenoid Leukamenin E. J Plant Growth Regul 32:628–635

    Article  CAS  Google Scholar 

  • Yapa PAJ, Kawasaki T, Matsumoto H (1986) Changes of some membrane-associated enzyme activities and degradation of membrane phospholipids in cucumber roots due to Ca2+ starvation. Plant Cell Physiol 27:223–232

    CAS  Google Scholar 

  • Yoshida S (1979) Freezing injury and phospholipid degradation in vivo in woody plant cells, in: effects of freezing on activity of membrane-bound phospholipase D in microsome-enriched membranes. Plant Physiol 64:252–256

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Young SA, Wang X, Leach JE (1996) Changes in the plasma membrane distribution of rice phospholipase D during resistant inter actions with Xanthomonas oryzae Pv oryzae. Plant Cell 8:1079–1090

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yuan H, Chen L, Paliyath G, Sullivan A, Murr DP (2005) Characterization of microsomal and mitochondrial phospholipase D activities and cloning of a phospholipase D alpha cDNA from strawberry fruits. Plant Physiol Biochem 43:535–547

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Qin C, Zhao J, Wang X (2004) Phospholipase D alpha1-derived phosphatidic acid interacts with ABI1 phosphatase 2C and regulates abscisic acid signaling. Proc Natl Acad Sci USA 101:08–13

    Article  Google Scholar 

  • Zhao P, Wang DL (2009) The role of phospholipase Dβ on signal transduction of low temperature in Arabidopsis thaliana. Genomics Appl Biol 28:901–907 (in China)

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation of China (No. 31160087, No. 31360061, No. 21365019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-zhe An.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, N., Ding, Fx., Wu, Gf. et al. Phospholipase Dα from Chorispora bungeana: cloning and partial functional characterization. Plant Growth Regul 75, 511–520 (2015). https://doi.org/10.1007/s10725-014-0015-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-014-0015-9

Keywords

Navigation