Skip to main content

Advertisement

Log in

Evaluation of Tinospora species: T. cordifolia, T. sinensis and T. crispa with microscopic imaging, physicochemical properties and major compounds profiling for authentic uses

  • Research Article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

The wide geographic distribution, ethno-botanical applications, species identification challenges, and morphological similarities among different species underscore the importance of qualitative analysis in safeguarding botanical purity and ensuring quality control. This study presents a comprehensive characterization of the main commercial plant part, namely the stem, of Tinospora cordifolia, Tinospora sinensis, and Tinospora crispa by considering their physico-chemical characteristics, macroscopic observations, and anatomical details. Through our investigations, we have identified crucial diagnostic features that can aid in distinguishing between different Tinospora species and detecting adulteration in dried raw materials. Notably, T. crispa exhibits more prominent warty protuberances on the stem compared to T. cordifolia and T. sinensis. Furthermore, the transverse section of all three species displays a multilayered cork with distinct radial files and layered cork development. While the heart-shaped leaves of T. cordifolia and T. crispa possess a smooth and pubescent texture respectively. The abaxial surface of T. sinensis leaves is densely coated with silky hairs. To assess the presence of specific bioactive compounds, namely tinosporaside and berberine, we employed high-performance thin-layer chromatography. Our findings reveal that tinosporaside exhibits a band at Rf 0.45 in T. sinensis and T. crispa, whereas all three species display a berberine presence spot with varying intensities at Rf 0.23. These biochemical markers serve as reliable identifiers for species differentiation. Thus, our study establishes a cost-effective approach for enhancing quality control and species identification in Tinospora species, ultimately reducing the occurrence of botanical adulteration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahmad SM, Hoot SB, Qazi PH, Verma V (2009) Phylogenetic patterns and genetic diversity of indian Tinospora species based on chloroplast sequence data and cytochrome P450 polymorphisms. Plant Syst Evol 281(1–4):87–96

    Article  CAS  Google Scholar 

  • Ahmad W, Jantan I, Bukhari SN (2016) Tinospora crispa (L.) Hook. f. and Thomson: a review of its ethnobotanical, phytochemical, and pharmacological aspects. Front Pharm 21(7):59

    Google Scholar 

  • Anonymous (2023) Plant of World Online, Retrieved from https://powo.science.kew.org/results?f=accepted_names&pagesize=120&q=tinospora. Accessed on 4 July 2023

  • Begum HJ, Ramamurthy V, Kumar SS (2019) Study of synthesis and characterization of silver nanoparticles from Tinospora cordifolia. Pharm Innov J 8(1):612–615

    CAS  Google Scholar 

  • Bonvicini F, Mandrone M, Antognoni F, Poli F, Gentilomi GA (2014) Ethanolic extracts of Tinospora cordifolia and Alstoniascholaris show antimicrobial activity towards clinical isolates of methicillin-resistant and carbapenemase-producing bacteria. Nat Prod Res 28(18):1438–1445

    Article  CAS  PubMed  Google Scholar 

  • Choudhary N, Siddiqui MB, Khatoon S (2014) Pharmacognostic evaluation of Tinospora Cordifolia (Willd.) Miers and identification of biomarkers. Ind J Trad Knowl 13:543–550

    Google Scholar 

  • Chowdhury P (2020) Ayurveda botanicals in COVID-19 management:an in silico multi-target approach. J Biomol Struct Dyn 1–18

  • Dahanayake JM, Perera PK, Galappatty P, Fernando P, Arawwawala LDAM (2020) Tinospora cordifolia (Willd) Hook. f. (Thomas) grown in Sri Lanka: pharmacognostical, physico-chemical and phytochemical analysis of the stem. J Ayur HerbMed 6(4):217–221

    Google Scholar 

  • Gowrishankar R, Kumar M, Menon V, Divi SM, Saravanan M, Magudapathy P, Panigrahi BK, Nair KG, Venkataramaniah K (2010) Trace element studies on Tinospora cordifolia (Menispermaceae), Ocimum sanctum (Lamiaceae), Moringa oleifera (Moringaceae), and Phyllanthus niruri (Euphorbiaceae) using PIXE. Bio Trace Ele Res 133(3):357–363

    Article  CAS  Google Scholar 

  • Ilaiyaraja N, Khanum F (2011) Antioxidant potential of Tinospora cordifolia extracts and their protective effect on oxidation of biomolecules. Pharmaco J 3(20):56–62

    Article  Google Scholar 

  • Kalikar MV, Thawani VR, Varadpande UK, Sontakke SD, Singh RP, Khiyani RK (2008) Immunomodulatory effect of Tinospora cordifolia extract in human immuno-deficiency virus positive patients. Ind J Pharmacol 40(3):107–110

    Article  CAS  Google Scholar 

  • Kapur P, Pereira BMJ, Wuttke W, Jarry H (2009) Androgenic action of Tinospora cordifolia ethanolic extract in prostate cancer cell line LNCaP. Phytomedicine 16(6–7):679–682

    Article  CAS  PubMed  Google Scholar 

  • Khan MI, Harsha PSCS, Giridhar P, Ravishankar GA (2011) Pigment identification, antioxidant activity, and nutrient composition of Tinospora cordifolia (Willd.) Miers ex Hook. F & Thoms fruit. Inter J Food Sci Nutri 62(3):239–249

    Article  CAS  Google Scholar 

  • Khatoon S, Irshad S, Vijayakumar M, Choudhry N, Siddiqui ZA, Kumar N (2018) Pharmacognostic analysis of Tinospora cordifolia (Thunb.) Miers, with respect to Dioecy. Single Cell Biol 7:1–10

    CAS  Google Scholar 

  • Kumar A, Kumar M, Dandapat S, Sinha MP (2013) Antioxidant activity and pharmacological screening of Tinospora cordifolia (Thunb). Bioscan 8(2):689–693

    CAS  Google Scholar 

  • Lital M, Camelo S, Veillet S, Lafont R, Dilda PJ (2021) Developing new drugs that activate the protective arm of the renin–angiotensin system as a potential treatment for respiratory failure in COVID-19 patients. Drug Discov Today 26(5):1311–1318

    Article  Google Scholar 

  • Nagral A, Adhyaru K, Rudra OS, Gharat A, Bhandare S (2021) Herbal immune booster-induced liver injury in the COVID-19 pandemic-a case series. J Clin Exp Hepatol 11(6):732–738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parveen A (2019) Comparative assessment of safety and quality of Tinospora species-Tinospora crispa and Tinospora sinensis Dissertation, The University of Mississippi

  • Parveen A, Adams JS, Raman V, Budel JM, Zhao J, Babu GN, Khan IA (2020) Comparative morpho-anatomical and HPTLC profiling of Tinospora species and dietary supplements. Planta Med 86(07):470–481

    Article  CAS  PubMed  Google Scholar 

  • Patani A (ed) (2002) Indian Herbal Pharmacopoeia. Revised new ed. Indian Drug Manufacturers Association, Mumbai

    Google Scholar 

  • Patel U, Girme A, Patel K, Ghule C, Hingorani L, Gandhi T (2021) A validated HPTLC method for quantification of cordifolioside A, 20-β-hydroxyecdysone and columbin with HPTLC–ESI–MS/MS characterization in stems of Tinospora cordifolia. J Planar Chroma Modern TLC 34(3):217–228

    Article  CAS  Google Scholar 

  • Patturaj R, Ravikumar K (2019) Comparative pharmacognostical and histochemical studies on the three different species of Tinospora on stem and leaf. J Pharm Phytochem 8(2):650–655

    Google Scholar 

  • Payyappallimana U, Ravikumar K, Venkatasubramanian P (2022) Can Guduchi (Tinospora cordifolia), a well-known ayurvedic hepato-protectant cause liver damage. J Ayur Integ Med 14:100658

    Google Scholar 

  • Pradhan D, Pandey A (2013) Estimation of starch extracted from different diameter thickness stem of Giloe (Tinospora cordifolia Willd Miers). J Pharmacogn Phytochem 2:162–163

    Google Scholar 

  • Puratchimani V, Jha S (2007) HPTLC standardization of Tinospora cordifolia using tinosporaside. Ind J Pharm Sci 69(4):578

    Article  CAS  Google Scholar 

  • Qin XY, Luo JY, Gao ZG (2002) Yao ethnic medicinals in China. Ethnic Publish House, Beijing, p 57

    Google Scholar 

  • Sharma R, Amin H, Prajapati PK (2015) Antidiabetic claims of Tinospora cordifolia (Willd.) Miers: critical appraisal and role in therapy. Asian Pac J Trop Biomed 5(1):68–78

    Article  CAS  Google Scholar 

  • Singh BG, Warrier RR (2004) Tinospora cordifolia. Indian Forester 130:1806

    Google Scholar 

  • Sivarajan VV, Balachandran I (1999) Ayurvedic drugs and their plant sources. CBS Publishers & Distributors Pvt Ltd, New Delhi, pp 527–544

    Google Scholar 

  • Solereder H (1908) Systematic anatomy of the Dicotyledons, English Edition. Clarendon Press, Oxford

    Google Scholar 

  • Srinivasan GV, Unnikrishnan KP, Rema Shree AB, Balachandran I (2008) HPLC estimation of berberine in Tinospora cordifolia and Tinospora sinensis. Ind J Pharma Sci 70:96–99

    Article  CAS  Google Scholar 

  • Tiwari M, Dwivedi UN, Kakkar P (2014) Tinospora cordifolia extract modulates COX-2, iNOS, ICAM-1, pro-inflammatory cytokines and redox status in murine model of asthma. J Ethnopharm 153(2):326–337

    Article  CAS  Google Scholar 

  • Wallis TE A text book of pharmacognosy, reprinted, Metcalfe CR. Chalk L (1950) Anatomy of the dicotyledons 1(2);111–117

  • World Health Organization (2011) Quality control methods for herbal materials. Publication of World Health Organization

Download references

Acknowledgements

Authors express deep gratitude to Shree Dhootapapeshwar Limited, Mumbai, for their valuable support in providing the HPTLC analysis facilities.

Funding

The authors express their gratitude to National Medicinal Plants Board, Ministry of Ayush, Government of India funded Regional Cum Facilitation Centre (RCFC)—Western Region established at Department of Botany, S. P. Pune University, Pune, India for the financial support (Grant Ref No: GOI-A-831).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. N. Mokat.

Ethics declarations

Conflict of interest

The authors affirm no conflict of interest whatsoever.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 76.8 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mokat, D.N., Yadav, S. & Benke, A.P. Evaluation of Tinospora species: T. cordifolia, T. sinensis and T. crispa with microscopic imaging, physicochemical properties and major compounds profiling for authentic uses. Genet Resour Crop Evol 71, 1961–1971 (2024). https://doi.org/10.1007/s10722-023-01747-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-023-01747-w

Keywords

Navigation