Skip to main content
Log in

Novel structures and evolution of tRNA genes: insight into the chloroplast tRNAs of family Sapindaceae

  • Research Article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

Transfer ribonucleic acids (tRNAs) are small non-coding ribonucleic acids that decode messenger RNA sequences and are directly involved in protein synthesis by carrying amino acids to the ribosome. However, the chloroplast genome needs to better understand tRNAs' phylogeny and evolutionary mechanisms. The present study aimed to delineate the novel structural variations and evolutionary characteristics in the chloroplast genome tRNAs of thirty-six Sapindaceae species. Several novel tRNA structures were identified in the Sapindaceae chloroplast genome. The length of tRNAs ranged from 64 to 93 nucleotides, containing 27–29 anticodons. Pair-wise sequence results showed the conserved nucleotide consensus sequence U-U-C-x-A–x-U in Sapindaceae. The structural analysis revealed that, except for a few tRNAs (tRNAHis, tRNAGly, tRNAThr, tRNAPhe, tRNATry, tRNAMet, and tRNAPro), all contained a G nucleotide at the 1st position in the acceptor's arm of tRNAs secondary structure. The rate of transition and transversion of tRNAs are Iso-acceptor-specific. Evolutionary analysis revealed that Sapindaceae chloroplast tRNAs might have evolved polyphyletically with a high percentage of gene loss. Phylogenetic analysis revealed that the chloroplast genome's tRNAs evolved from several common ancestors. At the same time, tRNAVal and tRNAMet appear to be the ancestral tRNAs that underwent duplication diversification to give rise to other tRNAs. Our findings will help us understand the evolution of the tRNA and suggest a key role in chloroplast tRNA biology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arnheim N, Calabrese P (2009) Understanding what determines the frequency and pattern of human germline mutations. Nat Rev Genet 10

  • Barthélémy RM, Seligmann H (2016) Cryptic tRNAs in chaetognath mitochondrial genomes. Comput Biol Chem 62. https://doi.org/10.1016/j.compbiolchem.2016.04.007

  • Bendich AJ (2004) Circular chloroplast chromosomes: The grand illusion. Plant Cell 16

  • Bermudez-Santana C, Attolini CS, Kirsten T, et al (2010) Genomic organization of eukaryotic tRNAs. BMC Genomics 11. https://doi.org/10.1186/1471-2164-11-270

  • Bernhart SH, Hofacker IL, Will S, et al (2008) RNAalifold: Improved consensus structure prediction for RNA alignments. BMC Bioinformatics 9. https://doi.org/10.1186/1471-2105-9-474

  • Blomme T, Vandepoele K, De Bodt S, et al (2006) The gain and loss of genes during 600 million years of vertebrate evolution. Genome Biol 7. https://doi.org/10.1186/gb-2006-7-5-r43

  • Chen K, Durand D, Farach-Colton M (2000) NOTUNG: A Program for Dating Gene Duplications and Optimizing Gene Family Trees. Mary Ann Liebert, Inc.

  • Cotton JA, Page RDM (2005) Rates and patterns of gene duplication and loss in the human genome. Proceedings of the Royal Society B: Biological Sciences 272. https://doi.org/10.1098/rspb.2004.2969

  • De Jong P (1976) Flowering and Sex Expression in Acer L., A Biosystematic Study. Mededelingen Landbouwhogeschool Wageningen 76

  • Demongeot J, Seligmann H (2020) RNA Rings Strengthen Hairpin Accretion Hypotheses for tRNA Evolution: A Reply to Commentaries by Z.F. Burton and M. Di Giulio. J Mol Evol 88

  • Demuth JP, Bie T De, Stajich JE, et al (2006) The evolution of mammalian gene families. PLoS One 1. https://doi.org/10.1371/journal.pone.0000085

  • Dieci G, Sentenac A (2003) Detours and shortcuts to transcription reinitiation. Trends Biochem Sci 28

  • Dong P Bin, Wang RN, Afzal N, et al (2021) Phylogenetic relationships and molecular evolution of woody forest tree family Aceraceae based on plastid phylogenomics and nuclear gene variations. Genomics 113. https://doi.org/10.1016/j.ygeno.2021.03.037

  • Ehrlich R, Davyt M, López I, et al (2021) On the Track of the Missing tRNA Genes: A Source of Non-Canonical Functions? Front Mol Biosci 8. https://doi.org/10.3389/FMOLB.2021.643701/FULL

  • Gleiser G, Verdú M (2005) Repeated evolution of dioecy from androdioecy in Acer. New Phytologist 165. https://doi.org/10.1111/j.1469-8137.2004.01242.x

  • Hanawa-Suetsugu K, Bordeau V, Himeno H, et al (2001) Importance of the conserved nucleotides around the tRNA-like structure of Escherichia coli transfer-messenger RNA for protein tagging. Nucleic Acids Res 29. https://doi.org/10.1093/nar/29.22.4663

  • Hardt WD, Schlegl J, Erdmann VA, Hartmann RK (1993) Role of the D arm and the anticodon arm in tRNA recognition by Eubacterial and Eukaryotic RNase P enzymes. Biochemistry 32. https://doi.org/10.1021/bi00211a014

  • Harris AJ, Frawley E, Wen J (2017) The utility of single-copy nuclear genes for phylogenetic resolution of acer and dipteronia (Acereae, Sapindaceae). Ann Bot Fenn 54. https://doi.org/10.5735/085.054.0603

  • Hennig O, Philipp S, Bonin S, et al (2020) Adaptation of the romanomermis culicivorax cca-adding enzyme to miniaturized armless trna substrates. Int J Mol Sci 21. https://doi.org/10.3390/ijms21239047

  • Hereward JP, Werth JA, Thornby DF, et al (2018) Complete chloroplast genome of glyphosate resistant Sonchus oleraceus L. from Australia, with notes on the small single copy (SSC) region orientation. Mitochondrial DNA B Resour 3. https://doi.org/10.1080/23802359.2018.1450682

  • Hiratsuka J, Shimada H, Whittier R, et al (1989) The complete sequence of the rice (Oryza sativa) chloroplast genome: Intermolecular recombination between distinct tRNA genes accounts for a major plastid DNA inversion during the evolution of the cereals. MGG Mol General Genet 217. https://doi.org/10.1007/BF02464880

  • Holley RW, Apgar J, Everett GA et al (1965) Structure of a ribonucleic acid. Science (1979) 147:. https://doi.org/10.1126/science.147.3664.1462

  • Howe CJ (1985) The endpoints of an inversion in wheat chloroplast DNA are associated with short repeated sequences containing homology to att-lambda. Curr Genet 10. https://doi.org/10.1007/BF00636479

  • Jühling F, Pütz J, Florentz C, Stadler PF (2012) Armless mitochondrial tRNAs in enoplea (nematoda). RNA Biol 9. https://doi.org/10.4161/rna.21630

  • Jühling T, Duchardt-Ferner E, Bonin S, et al (2018) Small but large enough: Structural properties of armless mitochondrial tRNAs from the nematode Romanomermis culicivorax. Nucleic Acids Res 46. https://doi.org/10.1093/nar/gky593

  • Kanai A (2015) Disrupted tRNA genes and tRNA fragments: A perspective on tRNA gene evolution. Life 5

  • Kearse M, Moir R, Wilson A et al (2012) Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647–1649. https://doi.org/10.1093/bioinformatics/bts199

    Article  PubMed  PubMed Central  Google Scholar 

  • Kejnovsky E, Leitch IJ, Leitch AR (2009) Contrasting evolutionary dynamics between angiosperm and mammalian genomes. Trends Ecol Evol 24

  • Kirchner S, Ignatova Z (2015) Emerging roles of tRNA in adaptive translation, signalling dynamics and disease. Nat Rev Genet 16

  • Knorr W, Heimann M (2001) Uncertainlies in global terrestrial biosphere modeling 1. A comprehensive sensitivity analysis with a new photosynthesis and energy balance scheme. Global Biogeochem Cycles 15. https://doi.org/10.1029/1998GB001059

  • Köhrer C, Mandal D, Gaston KW, et al (2014) Life without tRNAIle-lysidine synthetase: Translation of the isoleucine codon AUA in Bacillus subtilis lacking the canonical tRNA 2Ile. Nucleic Acids Res 42. https://doi.org/10.1093/nar/gkt1009

  • Kozak M (1999) Initiation of translation in prokaryotes and eukaryotes. Gene 234

  • Kumar S, Stecher G, Li M et al (2018) MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549. https://doi.org/10.1093/molbev/msy096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee TH, Tang H, Wang X, Paterson AH (2013) PGDD: A database of gene and genome duplication in plants. Nucleic Acids Res 41. https://doi.org/10.1093/nar/gks1104

  • Lowe TM, Chan PP (2016) tRNAscan-SE On-line: integrating search and context for analysis of transfer RNA genes. Nucleic Acids Res 44. https://doi.org/10.1093/nar/gkw413

  • Lyons E, Pedersen B, Kane J, et al (2008) Finding and comparing syntenic regions among Arabidopsis and the outgroups papaya, poplar, and grape: CoGe with rosids. Plant Physiol 148. https://doi.org/10.1104/pp.108.124867

  • Magadum S, Banerjee U, Murugan P, et al (2013) Gene duplication as a major force in evolution. J Genet 92. https://doi.org/10.1007/s12041-013-0212-8

  • Mallick B, Chakrabarti J, Sahoo S et al (2005) Identity elements of Archaeal tRNA. DNA Research 12. https://doi.org/10.1093/dnares/dsi008

  • Maréchal-Drouard L, Guillemaut P, Pfitzingzer H, Weil JH (1991) Chloroplast tRNAs and tRNA genes: structure and function. In: The translational apparatus of photosynthetic organelles

  • Michaud M, Cognat V, Duchêne AM, Maréchal-Drouard L (2011) A global picture of tRNA genes in plant genomes. Plant J 66. https://doi.org/10.1111/j.1365-313X.2011.04490.x

  • Mohanta TK, Bae H (2017) Analyses of genomic trna reveal presence of novel tRNAs in oryza sativa. Front Genet 8. https://doi.org/10.3389/fgene.2017.00090

  • Mohanta TK, Khan AL, Hashem A, et al (2019) Genomic and evolutionary aspects of chloroplast tRNA in monocot plants. BMC Plant Biol 19. https://doi.org/10.1186/s12870-018-1625-6

  • Nguyen MLT (2006) Flora of China. Vol. 14. Apiaceae through Ericaceae. Econ Bot 60. https://doi.org/10.1663/0013-0001(2006)60[95:focvat]2.0.co;2

  • Ohta T (2010) Gene conversion and evolution of gene families: an overview. Genes (Basel) 1

  • Palumbi SR (1994) Genetic divergence, reproductive isolation, and marine speciation. Annu Rev Ecol Syst 25

  • Panchy N, Lehti-Shiu M, Shiu SH (2016) Evolution of gene duplication in plants. Plant Physiol 171. https://doi.org/10.1104/pp.16.00523

  • Phizicky EM, Hopper AK (2010) tRNA biology charges to the front. Genes Dev 24

  • Pons J, Bover P, Bidegaray-Batista L, Arnedo MA (2019) Arm-less mitochondrial tRNAs conserved for over 30 millions of years in spiders. BMC Genomics 20. https://doi.org/10.1186/s12864-019-6026-1

  • Rasmussen MD, Kellis M (2012) Unified modeling of gene duplication, loss, and coalescence using a locus tree. Genome Res 22. https://doi.org/10.1101/gr.123901.111

  • Renny-Byfield S, Wendel JF (2014) Doubling down on genomes: Polyploidy and crop plants. Am J Bot 101. https://doi.org/10.3732/ajb.1400119

  • Rogers HH, Bergman CM, Griffiths-Jones S (2010) The evolution of tRNA genes in Drosophila. Genome Biol Evol 2. https://doi.org/10.1093/gbe/evq034

  • Saeki I, Murakami N (2009) Chloroplast DNA phylogeography of the endangered Japanese red maple (Acer pycnanthum): The spatial configuration of wetlands shapes genetic diversity. Divers Distrib 15. https://doi.org/10.1111/j.1472-4642.2009.00609.x

  • Salinas-Giegé T, Giegé R, Giegé P (2015) TRNA biology in mitochondria. Int J Mol Sci 16

  • Saski C, Lee SB, Fjellheim S, et al (2007) Complete chloroplast genome sequences of Hordeum vulgare, Sorghum bicolor and Agrostis stolonifera, and comparative analyses with other grass genomes. Theor Appl Genet 115. https://doi.org/10.1007/s00122-007-0567-4

  • Schimmel P (2018) RNA Processing and Modifications: The emerging complexity of the tRNA world: Mammalian tRNAs beyond protein synthesis. Nat Rev Mol Cell Biol 19

  • Seligmann H (2013) Pocketknife tRNA hypothesis: Anticodons in mammal mitochondrial tRNA side-arm loops translate proteins? BioSystems 113. https://doi.org/10.1016/j.biosystems.2013.07.004

  • Seligmann H (2012) Overlapping genetic codes for overlapping frameshifted genes in Testudines, and Lepidochelys olivacea as special case. Comput Biol Chem 41. https://doi.org/10.1016/j.compbiolchem.2012.08.002

  • Seligmann H (2014) Putative anticodons in mitochondrial tRNA sidearm loops: Pocketknife tRNAs? J Theor Biol 340. https://doi.org/10.1016/j.jtbi.2013.08.030

  • Seligmann H, Labra A (2013) Tetracoding increases with body temperature in Lepidosauria. BioSystems 114. https://doi.org/10.1016/j.biosystems.2013.09.002

  • Seligmann H, Warthi G (2019) Chimeric Translation for Mitochondrial Peptides: Regular and Expanded Codons. Comput Struct Biotechnol J 17. https://doi.org/10.1016/j.csbj.2019.08.006

  • Shahid Masood M, Nishikawa T, Fukuoka SI et al (2004) The complete nucleotide sequence of wild rice (Oryza nivara) chloroplast genome: First genome wide comparative sequence analysis of wild and cultivated rice. Gene 340. https://doi.org/10.1016/j.gene.2004.06.008

  • Sharp SJ, Schaack J, Cooley L, et al (1985) Structure and transcription of eukaryotic tRNA gene. Crit Rev Biochem Mol Biol 19. https://doi.org/10.3109/10409238509082541

  • Smith D, Yarus M (1989) Transfer RNA structure and coding specificity. II. A D-arm tertiary interaction that restricts coding range. J Mol Biol 206. https://doi.org/10.1016/0022-2836(89)90497-X

  • Soltis DE, Albert VA, Leebens-Mack J, et al (2009) Polyploidy and angiosperm diversification. Am J Bot 96. https://doi.org/10.3732/ajb.0800079

  • Tamura K, Stecher G, Peterson D, et al (2013) MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30. https://doi.org/10.1093/molbev/mst197

  • Teufel AI, Liu L, Liberles DA (2016) Models for gene duplication when dosage balance works as a transition state to subsequent neo-or sub-functionalization. BMC Evol Biol 16. https://doi.org/10.1186/s12862-016-0616-1

  • Wang RJ, Cheng CL, Chang CC, et al (2008) Dynamics and evolution of the inverted repeat-large single copy junctions in the chloroplast genomes of monocots. BMC Evol Biol 8. https://doi.org/10.1186/1471-2148-8-36

  • Wen J, Nie ZL, Ickert-Bond SM (2016) Intercontinental disjunctions between eastern Asia and western North America in vascular plants highlight the biogeographic importance of the Bering land bridge from late Cretaceous to Neogene. J Syst Evol 54

  • Wende S, Platzer EG, Jühling F, et al (2014) Biological evidence for the world’s smallest tRNAs. Biochimie 100. https://doi.org/10.1016/j.biochi.2013.07.034

  • Wise RR, J. Kenneth Hoober (2007) The structure and function of plastids. Springer Science & Business Media

  • Yang Z, Yoder AD (1999) Estimation of the transition/transversion rate bias and species sampling. J Mol Evol 48. https://doi.org/10.1007/PL00006470

  • Zhang TT, Yang Y, Song XY, et al (2021) Novel structural variation and evolutionary characteristics of chloroplast trna in gossypium plants. Genes (Basel) 12. https://doi.org/10.3390/genes12060822

  • Zhang Z, Gerstein M (2003) Patterns of nucleotide substitution, insertion and deletion in the human genome inferred from pseudogenes. Nucleic Acids Res 31. https://doi.org/10.1093/nar/gkg745

  • Zhao J, Teufel AI, Liberles DA, Liu L (2015) A generalized birth and death process for modeling the fates of gene duplication. BMC Evol Biol 15. https://doi.org/10.1186/s12862-015-0539-2

  • Zhong QY, Fu XG, Zhang TT, et al (2021) Phylogeny and evolution of chloroplast tRNAs in Adoxaceae. Ecol Evol 11. https://doi.org/10.1002/ece3.7133

  • Zuo Z, Peng D, Yin X, et al (2013) Genome-wide analysis reveals origin of transfer RNAl tRNA halves. Mol Biol Evol 30. https://doi.org/10.1093/molbev/mst107

Download references

Acknowledgements

The authors thank researchers who helped and supported the data collection and bioinformatics analysis.

Funding

Researchers Supporting Project number (RSPD2023R741), King Saud University. This work was supported by the National Key R & D Program of China (No. 2018YFA0606102), the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDA19020303, No. XDA26010202), and the Natural Science Foundation of China (No. 41771056).

Author information

Authors and Affiliations

Authors

Contributions

It is stated that each Author contributes substantially to the article. KS was a significant contributor to writing and organizing the research plan in the manuscript. HK, AA, UZ, FC, JD and SA guided the interpretation and discussion. SF, EAM, IMM, HOE provided technical expertise, editing, and funding acquisition. JD and KS helped in writing the manuscript. All authors have seen and approved the final manuscript and have taken due care to ensure the work's integrity.

Corresponding authors

Correspondence to Umar Zeb, Junhu Dai or Sajid Fiaz.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahzad, K., Li, ZH., Khan, H. et al. Novel structures and evolution of tRNA genes: insight into the chloroplast tRNAs of family Sapindaceae. Genet Resour Crop Evol 71, 893–914 (2024). https://doi.org/10.1007/s10722-023-01671-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-023-01671-z

Keywords

Navigation