Skip to main content
Log in

High and similar genetic diversity in wild and cultivated populations of the economically important fruit tree Caryocar coriaceum Wittm. in Caatinga

  • Research Article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Domestication involves a genetic selection process that may lead to loss of genetic diversity. Several species that are used as food resources by native Americans may have been domesticated or managed to some degree. In the Cerrado and the Caatinga ecoregions in Brazil, fruits and seeds are commonly found in archeological sites, implying human consumption. Here, we test the hypotheses that different management systems affect genetic diversity and differentiation, and edible morphological traits of fruits and seeds of Caryocar coriaceum. We analyzed the variation in microsatellite loci and morphological traits in wild populations under extractivism, in situ managed populations and cultivated populations. We found similar genetic diversity, allelic richness and inbreeding in populations in different management systems, contrary to our expectations. We also found no genetic differentiation among management systems, contradicting our prediction. These results suggest that the species has not experienced a bottleneck, most likely because the plantations are a first-generation selection of seeds in wild populations, and the farmers keep high tree density and large planted populations favoring high genetic diversity. This also suggests a management system allowing the maintenance of genetic diversity. However, we found high differences in edible morphometric traits, supporting our prediction. Cultivated and in situ management populations showed larger fruit and seed traits than wild populations under extrativism. These findings suggest that farmers are intentionally selecting fruits with some edible characteristics to establish the plantations or to keep and manage populations in situ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Additional data are provided as supplementary information in the online version of this article.

References

  • Allaby RG, Stevens CJ, Kistler L, Fuller DQ (2021) Genetic revelations of a new paradigm of plant domestication as a landscape level process. In: Goldman I (ed) Plant breeding reviews. Wiley, Hoboken

    Google Scholar 

  • Amaral TS, Santos JS, Rosa FF, Pessôa MB, Chaves LJ, Ribeiro MC, Collevatti RG (2021) Agricultural landscape heterogeneity matter: responses of neutral genetic diversity and adaptive traits in a Neotropical savanna Tree. Front Genet 11:606222. https://doi.org/10.3389/fgene.2020.606222

    Article  PubMed  PubMed Central  Google Scholar 

  • Arroyo-Kalin M (2017) Human niche construction and population growth in pre-Columbian Amazonia. Archaeol Int 20:122–136. https://doi.org/10.5334/ai-367

    Article  Google Scholar 

  • Instituto Brasileiro de Geografia e Estatística (IBGE) (2022) Extração vegetal e Silvicultura. https://cidades.ibge.gov.br/brasil/ce/pesquisa/16/12705 Accessed 10 march 2022

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference. Springer, New York

    Google Scholar 

  • Casas A, Caballero J (1996) Traditional management and morphological variation in Leucaena esculenta (Fabaceae: mimosoideae) in the mixtc region of Guerrero, Mexico. Econ Bot 50:167–181. https://doi.org/10.1007/BF02861449

    Article  Google Scholar 

  • Casas A, Otero-Arnaiz A, Pérez-Negrón E, Valiente-Banuet A (2007) In situ management and domestication of plants in Mesoamerica. Ann Bot 100:1101–1115. https://doi.org/10.1093/aob/mcm126

    Article  PubMed  PubMed Central  Google Scholar 

  • Cassino MFC, Shock MP, Furquim LP, Ortega DD, Machado JS, Madella M, Clement CR (2021) Archaeobotany of Brazilian indigenous peoples and their food plants. In: Jacob MCM, Albuquerque UP (eds) Local food plants of Brazil. Ethnobiology. Springer, Cham

    Google Scholar 

  • Clement CR (1999) 1492 and the loss of Amazonian crop genetic resources. I. The relation between domestication and human population decline. Econ Bot 53:188–202. https://doi.org/10.1007/BF02866498

    Article  Google Scholar 

  • Clement CR, Cristo-Araújo M, D’Eeckenbrugge GC, Pereira AA, Picanço-Rodrigues D (2010) Origin and domestication of native Amazonian crops. Diversity 2:72–106

    Article  Google Scholar 

  • Clement CR, Denevan WM, Heckenberger MJ, Junqueira AB, Neves EG, Texeira WG, Woods WL (2015) The domestication of Amazonia before European conquest. Proc R Soc 282:20150813. https://doi.org/10.1098/rspb.2015.0813

    Article  Google Scholar 

  • Clement CR, Casas A, Parra-Rondinel FA, Levis C, Peroni N, Hanazaki N, Cortés-Zárraga L, Rangel-Landa S, Alves RP, Ferreira MJ, Cassino MF, Coelho SD, Cruz-Soriano A, Pancorbo-Olivera M, Blancas J, Martínez-Ballesté A, Lemes G, Lotero-Velásquez E, Bertin VM, Mazzochini GG (2021) Disentangling domestication from food production systems in the neotropics. Quaternary 4(1):1–35. https://doi.org/10.3390/quat4010004

    Article  Google Scholar 

  • Collevatti R, Grattapaglia D (2001) Population genetic structure of the endangered tropical tree species Caryocar brasiliense, based on variability at microsatellite loci. Mol Ecol 10(2):349–356. https://doi.org/10.1046/j.1365-294X.2001.01226.x

    Article  CAS  PubMed  Google Scholar 

  • Collevatti RG, Brondani RV, Grattapaglia D (1999) Development and characterization of microsatellite markers for genetic analysis of a Brazilian endangered tree species Caryocar brasiliense. Heredity 83:748–756. https://doi.org/10.1046/j.1365-2540.1999.00638.x

    Article  CAS  PubMed  Google Scholar 

  • Collevatti RG, Estolano R, Garcia SF, Hay JD (2010) Short-distance pollen dispersal and high self-pollination in a bat-pollinated neotropical tree. Tree Genet Genomes 6:555–564. https://doi.org/10.1007/s11295-010-0271-4

    Article  Google Scholar 

  • Collevatti R, Lima-Ribeiro MS, Souza-Neto AC, Franco AA, Oliveira G, Terribile LV (2012) Recovering the demographical history of a brazilian cerrado tree species Caryocar brasiliense: coupling ecological niche modeling and coalescent analyses. Nat Conserv 10(2):169–176

    Article  Google Scholar 

  • Cruse-Sanders JM, Parker KC, Friar EA, Huang DI, Mashayekhi S, Prince LM, Otero- Arnaiz A, Casas A (2013) Managing diversity: domestication and gene flow in Stenocereus stellatus Riccob. (Cactaceae) in Mexico. Ecol Evol 3(5):1340–1355. https://doi.org/10.1002/ece3.524

    Article  PubMed  PubMed Central  Google Scholar 

  • Cruz M, Casas A (2002) Morphological variation and reproductive biology of Polaskia chende (Cactaceae) under domestication in Central Mexico. J Arid Environ 51:561–576. https://doi.org/10.1006/jare.2001.0955

    Article  Google Scholar 

  • Do C, Waples RS, Peel D, Macbeth GM, Tillett BJ, Ovenden JR (2014) NeEstimator v2: re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Mol Ecol Resour 14(1):209–214. https://doi.org/10.1111/1755-0998.12157

    Article  CAS  PubMed  Google Scholar 

  • Earl DA, vonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genet Resour 4:359–361. https://doi.org/10.1007/s12686-011-9548-7

    Article  Google Scholar 

  • El Mousadik A, Petit RJ (1996) High level of genetic differentiation for allelic richness among populations of the argan tree [Argania spinosa (L.) Skeels] endemic to Morocco. Theoret Appl Genet 92:832–839. https://doi.org/10.1007/BF00221895

    Article  Google Scholar 

  • Environmental Systems Research Institute (ESRI) (2017) ArcGIS 10.5 Desktop. ESRI, Redlands, California, USA

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14(8):2611–2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x

    Article  CAS  PubMed  Google Scholar 

  • Excoffier L, Laval G, Schneider S (2007) Arlequin (Version 3.0): an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50

    PubMed  PubMed Central  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: Linked loci and correlated allele frequencies. Genetics 164:1567–1587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferreira ME, Grattapaglia D (1998) Introdução ao uso de marcadores moleculares em análise genética. 3ed. Brasília: EMBRAPA/CENARGEN, 220p https://www.researchgate.net/publication/312465988_Introducao_ao_uso_de_marcadores_moleculares_em_analise_genetica/link/59ecb35da6fdccef8b0dbd44/download

  • Francisconi AF, Alves RP, Clement CR, Dequigiovanni G, Carvalho IAS, Veasey EA (2021) Genetic structure and diversity identify incipient domestication of Piquiá [Caryocar villosum (Aubl.) pers.] along the lower Tapajós River, Brazilian Amazonia. Genet Resour Crop Evol. https://doi.org/10.1007/s10722-020-01078-0

    Article  Google Scholar 

  • Gepts P, Papa R (2002) Evolution during domestication. Encyclopedia of life sciences p1–7 https://www.researchgate.net/profile/Roberto-Papa-2/publication/227991575_Evolution_during_Domestication/links/0fcfd50b71cb8e0d2a000000/Evolution-during-Domestication.pdf

  • Goudet J, Perrin N, Waser P (2002) Tests for sex-biased dispersal using bi-parentally inherited genetic markers. Mol Ecol 11(6):1103–1114. https://doi.org/10.1046/j.1365-294X.2002.01496.x

    Article  CAS  PubMed  Google Scholar 

  • Hadfield JD (2010) MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package. J Stat Softw 33:1–22

    Article  Google Scholar 

  • Henery ML, Westoby M (2001) Seed mass and seed nutrient content as predictors of seed output variation between species. Oikos 92:479–490. https://doi.org/10.1034/j.1600-0706.2001.920309.x

    Article  Google Scholar 

  • Hollingsworth PM, Dawson IK, Goodall-Copestake P, Richardson JE, Weber JC, Sotelo Montes C, Pennington RT (2005) Do farmers reduce genetic diversity when they domesticate tropical trees? A case study from Amazonia. Mol Ecol 14:497–501

    Article  CAS  PubMed  Google Scholar 

  • Iriarte J (2007) New perspectives on plant domestication and the development of agriculture in the new world. In: Denham TP, Iriate J, Vrydaghs J (eds) Rethinking agriculture: archaeological and ethnoarchaeological perspectives, Volume 51 of one world archaeology. Routledge, pp 167–188

    Google Scholar 

  • Iriarte J (2009) Narrowing the gap: exploring the diversity of early food-production economies in the Americas. Curr Anthropol 50:5

    Article  Google Scholar 

  • Kimura M (1983) The neutral theory of molecular evolution. University Press, Cambridge

    Book  Google Scholar 

  • Levis C, Costa FRC, Bongers F, Peña-ClaroS M, Clement CR, Junqueira AB, Neves EG, Tamanaha EK, Fog Figueiredo, Salomão RP, Castilho CV, Magnusson WE, Phillips OL, Guevara JE, Sabatier D, Molino JF, Cárdenas Lópes D, Mendoza AM, Pitman NCA, Duque A, Núñez Vargas P, Zartman CE, Vasquez R, Andrade A, Camargo JL, Feldpausch TR, Laurence SGW, Laurance WF, Killeen TJ, Mendonça Nascimento HE, Montero JC, Mostadedo B, Amaral IL, Guimarães Vieira IC, Brienen R, Castellanos H, Terborgh J, De Jesus Veiga Carim M, Silva Guimarães JR, Souza Coelho L, Almeida Matos FD, Wittmann F, Mogollón HF, Damasco G, Dávila N, García-Villacorta R, Coronado ENH, Emilio T, Andrade Lima Filho D, Schietti J, Souza P, Targhetta N, Comiskey JA, Marimon BS, Marimon BH, Neill D, Alonso A, Arroyo L, Carvalho FA, Souza FC, Dallmeier F, Pansonato MP, Duivenvoorden JF, Fine PVA, Stevenson PR, Araujo-Murakami A, Aymard CGA, Baraloto C, Amaral DD, Engel J, Henkel TW, Maas P, Petronelli P, Cardenas Revilla JD, Stropp J, Daly D, Gribel R, Ríos Paredes M, Silveira M, Thomas-Caesar R, Baker TR, Silva NF, Ferreira LV, Peres CA, Silman MR, Cerón C, Valverde FC, Di Fiore A, Jimenez EM, Peñuela Mora MC, Toledo M, Barbosa EM, Matos Bonates LC, Arboleda NC, Sousa Farias E, Fuentes A, Guillaumet JL, Møller Jørgensen P, Malhi Y, Andrade Miranda IP, Phillips JF, Prieto A, Rudas A, Ruschel AR, Silva N, Von Hildebrand P, Vos VA, Zent EL, Zent S, Cintra BBL, Nascimento MT, Oliveira AA, Ramirez-Ângulo H, Ramos JF, Rivas G, Schöngart J, Sierra R, Tirado M, Van Der Heijden G, Torre EV, Wang O, Young KR, Cano A, Farfa-Rios W, Ferreira C, Hoffman B, Mendoza C, Mesones I, Torres-Lezama A, Medina MNU, Van Andel TR, Villarroel D, Zagt R, Alexiades MN, Balslev H, Garcia-Cabrera K, Gonzales T, Hernandez L, Huamantupa-Chuquimaco I, Manzatto AG, Milliken W, Cuenca WP, Pansini S, Pauletto D, Arevalo FR, Costa Reis NF, Sampaio AF, Urrego Giraldo LE, Valderrama Sandoval EH, Valenzuela Gamarra L, Vela CIA, Ter Steege H (2017) Persistent effects of pre-Columbian plant domestication on Amazonian Forest composition. Science 355(6328):925–931

    Article  CAS  PubMed  Google Scholar 

  • Levis C, Flores BM, Moreira PA, Luize BG, Alves RP, Franco-Moraes J, Lins J, Konings E, Peña-Claros M, Bongers F, Costa FRC, Clement CR (2018) How people domesticated Amazonian forests. Front Ecol Evol 5:171. https://doi.org/10.3389/fevo.2017.00171

    Article  Google Scholar 

  • Liland HH, Mevik BH, Wehrens R, Hiemstra P (2021) R package pls: partial least squares and principal component regression. (Version 2.8–0), https://cran.r-project.org/web/packages/pls/index.html

  • Lins Neto EMF, Peroni N, Maranhão CMC, Maciel MIS, Albuquerque UP (2011) Analysis of umbu (Spondias tuberosa Arruda (Anacardiaceae)) in different landscape management regimes: a process of incipient domestication? Environ Monit Assess https://pubmed.ncbi.nlm.nih.gov/21853413/

  • Miller AJ, Gross BL (2011) From forest to field: perennial fruit crop domestication. Am J Bot 98(9):1389–1414

    Article  PubMed  Google Scholar 

  • Ministério do Meio Ambiente (MMA) (2004) Levantamento da cobertura vegetal e do uso do solo do bioma Caatinga. https://antigo.mma.gov.br/biomas/caatinga/mapa-de-cobertura-vegetal.html Accessed 10 march 2022

  • Nei M (1972) Genetic distance between populations. Am Nat 106(949):283–292

    Article  Google Scholar 

  • Nomura T (2008) Estimation of effective number of breeders from molecular coancestry of single cohort sample. Evol Appl 1:462–474. https://doi.org/10.1111/j.1752-4571.2008.00015.x

    Article  PubMed  PubMed Central  Google Scholar 

  • Prance GT, Silva MF (1973) “Caryocaraceae”. Flora Neotropica, vol 12, New York Botanical Garden Press, pp:1–76 http://www.jstor.org/stable/4393688

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155(2):945–959. https://doi.org/10.1093/genetics/155.2.945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prous A (2019) Arqueologia Brasileira: a pré-história e os verdadeiros colonizadores. Editora: Carlini & Caniato. 880 p. ISBN-10: 8580092817. ISBN-13: 978–8580092813

  • Puechmaille SJ (2016) The program structure does not reliably recover the correct population structure when sampling is uneven: Subsampling and new esti- mators alleviate the problem. Mol Ecol Resour 16:608–627

    Article  PubMed  Google Scholar 

  • Queiroga VP, Girão EG, Vasconcelos HEM, Almeida FAC, Oliveira MEB, Lima AC, Rocha LS, Araújo IMS (2016) Arranjo produtivo do pequi na chapada do Araripe. Capítulo I, p: 12–142. Separatas. Embrapa Agroindústria Tropical. https://www.embrapa.br/busca-de-publicacoes/-/publicacao/1052681/arranjo-produtivo-do-pequi-na-chapada-do-araripe Accessed 10 march 2022

  • R Core Team (2021) R: A Language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

  • Shepard GH, Ramirez H (2011) “Made in Brazil”: human dispersal of the Brazil nut (Bertholletia excelsa, Lecythidaceae) in ancient Amazonia1. Econ Bot 65:44–65. https://doi.org/10.1007/s12231-011-9151-6

    Article  Google Scholar 

  • Smith M, Moura NF, Clement CR, Fausto C, Emperaire L, Kuikuro SR (2015) Síndrome de domesticqação em pequi (Caryocar brasiliense Camb.) cultivado pelos Kuikuro do Parque Indígena do Xingu, Mato Grosso, Brasil. Conference: Symposio Latinoamericano de "Domesticaci6n y Manejo de Recursos Geneticos”, Lima – Peru. https://www.researchgate.net/publication/303552957 Accessed 19 march 2022

  • Smith M, Fausto C (2016) Socialidade e diversidade de pequis (Caryocar brasiliense, Caryocaraceae) entre os Kuikuro do alto rio Xingu (Brasil). Bol Mus Para Emílio Goeldi Cienc Hum Belém 11(1):87–113

    Article  Google Scholar 

  • Sousa-Júnior JR, Albuquerque UP, Peroni N (2013) Traditional knowledge and management of Caryocar coriaceum Wittm. (pequi) in the Brazilian Savanna northeastem Brazil. Econ Bot 67:225–233. https://doi.org/10.1007/s12231-013-9241-8

    Article  Google Scholar 

  • Sousa-Júnior JR, Collevatti RG, Lins Neto EMF, Peroni N, Albuquerque UP (2018) Traditional management affects the phenotypic diversity of fruits with economic and cultural importance in the Brazilian Savanna. Agroforest Syst 92:11–21. https://doi.org/10.1007/s10457-016-0005-1

    Article  Google Scholar 

  • Ter Steege H, Pitman NCA, Sabatier D, Baraloto C, Salomão RP, Guevara JE, Phillips OL, Castilho CV, Magnusson WE, Molino JF, Monteagudo A, Vargas PN, Montero JC, Feldpausch TR, Coronado ENH, Killeen TJ, Mostacedo B, Vasquez R, Assis RL, Terborgh J, Wittmann F, Andrade A, Laurance WF, Laurance SW, Marimon BS, Marimon JR, Vieira ICG, Amaral IL, Brienen R, Castellanos H, López DC, Duivenvoorden JF, Mogollón HF, Matos FDA, Dávila N, GarcíaVillacorta R, Diaz PRS, Costa F, Emilio T, Levis C, Schietti J, Souza P, Alonso A, Dallmeier F, Montoya AJD, Piedade MTF, Araujo-Murakami A, Arroyo L, Gribel R, Fine PVA, Peres CA, Toledo M, Aymard GA, Baker TR, Cerón C, Engel J, Henkel TW, Maas P, Petronelli P, Stropp J, Zartman CE, Daly D, Neill D, Silveira M, Paredes MR, Chave J, Lima Filho DA, Jørgensen PM, Fuentes A, Schöngart J, Valverde FC, Di Fiore A, Jimenez EM, Mora MCP, Phillips JF, Rivas G, Van Andel TR, Hildebrand PV, Hoffman B, Zent EL, Malhi Y, Prieto A, Rudas A, Ruschell AR, Silva N, Vos V, Zent S, Oliveira AA, Schutz AC, Gonzales T, Nascimento MT, Ramirez-Angulo H, Sierra R, Tirado M, Medina MNU, Heijden GVD, Vela CIA, Torre EV, Vriesendorp C, Wang O, Young KR, Baider C, Balslev H, Ferreira C, Mesones I, Torres-Lezama A, Giraldo LEU, Zagt R, Alexiades MN, Hernandez L, Huamantupa-Chuquimaco I, Milliken W, Cuencia WP, Pauletto A, Sandoval EV, Gamarra LV, Dexter KG, Feeley K, Lopez-Gonzalez G, Silman MR (2013) Hyperdominance in the Amazonian tree flora. Science 342:6156

    Google Scholar 

  • Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) Micro-Checker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol 4:535–538. https://doi.org/10.1111/j.1471-8286.2004.00684.x

    Article  CAS  Google Scholar 

  • Wagner HH, Fortin MJ (2013) A conceptual framework for the spatial analysis of landscape genetic data. Conserv Genet 14:253–261. https://doi.org/10.1007/s10592-012-0391-5

    Article  Google Scholar 

  • Wei T, Simko V (2021) R package 'corrplot': Visualization of a Correlation Matrix. (Version 0.92), https://github.com/taiyun/corrplot

  • Wright S (1931) Evolution in mendelian population. Genetics 16:97–159 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1201091/

  • Zuur A, Ieno EN, Walker N, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer Science & Business Media, Berlin

    Book  Google Scholar 

Download references

Acknowledgements

This work was supported by competitive grants from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) to RGC (Rede Cerrado CNPq/PPBio Project No. 457406/2012-7), Procad/CAPES project (# 88881.068425/2014-01), and to UPA a grant from FACEPE (Fundação de Amparo à Ciência e Tecnologia do Estado de Pernambuco, APQ-1264- 2.05/10). JRSJ receive a CNPq scholarship. RGC and UPA have been continuously supported by productivity grants from CNPq, which we gratefully acknowledge. We thank Instituto Chico Mendes de Conservação da Biodiversidade (ICMBio) for the sampling authorization in the Araripe National Forest (license # 38093-2/SISBIO), and two anonymous reviewers for helpful comments on the manuscript.

Funding

This work was supported by competitive grants from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) to RGC (Rede Cerrado CNPq/PPBio project no. 457406/2012–7), Procad/CAPES project (# 88881.068425/2014–01), and to UPA a grant from FACEPE (Fundação de Amparo à Ciência e Tecnologia do Estado de Pernambuco, APQ-1264- 2.05/10).

Author information

Authors and Affiliations

Authors

Contributions

RGC UPA and JRSJ designed the experiment. RGC and. UPA financed the work. JRSJ performed the field work, collected the samples, and performed the wet-lab work. RGC, LCV and WAM analyzed the data. RGC wrote the manuscript. All authors read and contributed to the final text.

Corresponding author

Correspondence to Rosane Garcia Collevatti.

Ethics declarations

Conflict of interests

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 167 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sousa-Junior, J.R., Vitorino, L.C., de Melo, W.A. et al. High and similar genetic diversity in wild and cultivated populations of the economically important fruit tree Caryocar coriaceum Wittm. in Caatinga. Genet Resour Crop Evol 70, 413–426 (2023). https://doi.org/10.1007/s10722-022-01435-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-022-01435-1

Keywords

Navigation