Skip to main content
Log in

Analysis of genetic variability and agronomic performance of Indian lettuce (Lactuca indica L.)

  • Research Article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

Lactuca indica L. is an undomesticated medicinal crop in the Asteraceae family. The study was carried out to identify elite genotypes for lettuce cultivation and breeding improvement. Data was recorded for 19 morphological and developmental traits across 38 accessions (Acc). The genotypic mean square variance was significant for all characters. The higher extent of genotypic and phenotypic coefficient of variation were obtained for basal branch, leaf blade width, and node number. The broad-sense heritability (H2B) ranged from 45.85% (seed length) to 98.59% (node number), whereas genetic advance as a percentage of the mean (GAM%) ranged from 9.33 to 191. Vegetative characters such as node number, plant height, basal branches were conjugated with high H2B and high GAM% indicating additive gene effect and selection of these traits based on phenotypic observation is effective for better gain. Reproductive traits, including bolting duration, flowering duration, and seed weight were linked with high H2B, and moderate GAM% revealing that these traits are amenable to genetic improvement, these traits also showed a significant and high positive correlation. Acc 55 and 8 showed the best performance for the majority of the attributes could be good material for further research and breeding. In the Wards’ phylogenetic tree of morphological traits, accessions were clustered based on their phenotypic characters rather than the geographic origin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abugalieva S, Didorenko S, Anuarbek S, Volkova L, Gerasimova Y, Sidorik I, Turuspekov Y (2016) Assessment of soybean flowering and seed maturation time in different latitude regions of Kazakhstan. PloS One. https://doi.org/10.1371/journal.pone.0166894

    Article  PubMed  PubMed Central  Google Scholar 

  • Acquaah G (2009) Principles of plant genetics and breeding. Wiley, New York

    Google Scholar 

  • Addinsoft, (2018) XLSTAT 2018: data analysis and statistics with Microsoft Excel. France, Paris

    Google Scholar 

  • Allard R (1960) Principles of plant breeding. Wiley, New York

    Google Scholar 

  • Armonk (2015) IBM SPSS statistics for windows, Version 23.0. NY: IBM Corp.

  • Bandi HR, Satyanarayana PV, Babu DR, Chamundeswari N, Rao VS, Raju SK (2018) Genetic variability estimates for yield and yield components traits and quality traits in rice (Oryza sativa L.). Science 7(5):20

    Google Scholar 

  • Belsley DA, Kuh E, Welsch RE (2005) Regression diagnostics: Identifying influential data and sources of collinearity. Wiley, New York

    Google Scholar 

  • Beharav A, Ben-David R, Dolezalova I, Lebeda A (2010) Eco-geographical distribution of Lactuca aculeata natural populations in northeastern Israel. Genet Resour Crop Evol 57:679–686. https://doi.org/10.1007/s10722-009-9503-6

    Article  Google Scholar 

  • Beharav A, Ben-Daid R, Dolezalova I, Lebeda A (2008) Eco-geographical distribution of Lactuca saligna natural populations in Israel. Isr J Plant Sci 56:195–206

    Article  Google Scholar 

  • Bhargavi M, Shanthi P, Reddy VLN, Mohan Reddy D, Ravindra Reddy B (2021) Estimates of genetic variability, heritability and genetic advance for grain yield and other yield attributing traits in rice (Oryza sativa L.). J Pharm Innov 10(5):507–511

    Google Scholar 

  • Bhattarai K, Louws FJ, Williamson JD, Panthee DR (2016) Diversity analysis of tomato genotypes based on morphological traits with commercial breeding significance for fresh market production in eastern USA. Aus J Crop Sci 10:1098

    Article  Google Scholar 

  • Bown D (1995) The royal horticultural society encyclopedia of herbs & their uses. Dorling Kindersley Limited

  • Burton GW (1952) Quantitative inheritance in grasses. Proc 6th Int Grassland Cong 1:227–285

    Google Scholar 

  • Chambers JM, Freeny A Heiberger RM (1992) Analysis of variance; designed experiments. In: JM Chambers, TJ Hastie (eds) Chapter 5 of statistical models. Wadsworth & Brooks/Cole

  • Choi C-I, Eom HJ, Kim KH (2016) Antioxidant and α-glucosidase inhibitory phenolic constituents of Lactuca indica L. Russ J Bioorganic Chem 42:310–315

    Article  CAS  Google Scholar 

  • Chowdhury M, Vandenberg B, Warkentin T (2002) Cultivar identification and genetic relationship among selected breeding lines and cultivars in chickpea (Cicer arietinum L.). Euphytica 127:317–325

    Article  CAS  Google Scholar 

  • Dabholkar A (1999) Elements of Biometrical genetics (revised and Enlarged Edition). Concept publishing company, New Delhi, India

  • D’Andrea L, Felber F, Guadagnuolo R (2008) Hybridization rates between lettuce (Lactuca sativa) and its wild relative (L. serriola) under field conditions. Environ Biosaf Res 7(2):61–71. https://doi.org/10.1051/ebr:2008006

    Article  Google Scholar 

  • Dempewolf H, Baute G, Anderson J, Kilian B, Smith C, Guarino L (2017) Past and future use of wild relatives in crop breeding. Crop Sci 57:1070–1082

    Article  Google Scholar 

  • Deshmukh S, Basu M, Reddy P (1986) Genetic variability, character association and path coefficients of quantitative traits in Virginia bunch varieties of groundnut. Indian J Agric Sci 56:816–882

    Google Scholar 

  • Dolezalova I, Kristkova E, Lebeda A, Vinter V (2002) Description of morphological characters of wild Lactuca L. spp. genetic resources (English-Czech version). Hort Sci (prague) 29:56–83

    Article  Google Scholar 

  • Fitzpatrick SW, Reid BN (2019) Does gene flow aggravate or alleviate maladaptation to environmental stress in small populations? Evol Appl 12(7):1402–1416. https://doi.org/10.1111/eva.12768.PMID:31417623;PMCID:PMC6691220

    Article  PubMed  PubMed Central  Google Scholar 

  • Gottlieb LD (1984) Genetics and morphological evolution in plants. The Am Nat 123(5):681–709

    Article  Google Scholar 

  • Gupta AJ, Dolma T, Yasmin Chattoo MA, S, (2008) Estimation of genetic variability and heritability in lettuce (Lactuca sativa L.). Indian J Plant Genet Resour 21(2):138–140

    Google Scholar 

  • Ha J, Lee T, Kim MY, Oliya BK, Gwag JG, Lee YH, Lee SH (2017) Comprehensive transcriptome analysis of Lactuca indica, a traditional medicinal wild plant. Mol Breed 37:1–12. https://doi.org/10.1007/s11032-017-0711-z

    Article  CAS  Google Scholar 

  • Han R, Truco MJ, Lavelle DO, Michelmore RW (2021) A composite analysis of flowering time regulation in lettuce. Front Plant Sci 12:360. https://doi.org/10.3389/fpls.2021.632708

    Article  Google Scholar 

  • Harishkumar K, Mukund S, Kulkarni BS, Patil BC (2017) Studies on genetic variability, heritability and genetic advance in F2 segregating population of China Aster [Callistephus chinensis L.(Nees.)]. Agric Res J 54(3):407–9. https://doi.org/10.5958/2395-146x.2017.00075.8

    Article  Google Scholar 

  • Hoffmann AA, Miller AD, Weeks AR (2021) Genetic mixing for population management: from genetic rescue to provenance. Evol Appl 14(3):634–652. https://doi.org/10.1111/eva.13154

    Article  PubMed  Google Scholar 

  • Jain RK, Joshi A, Chaudhary HR, Dashora A, Khatik CL (2018) Study on genetic variability, heritability and genetic advance in soybean [Glycine max (L.) Merrill]. Legume Res 41(4):532–6. https://doi.org/10.18805/LR-3874

    Article  Google Scholar 

  • Jain JR, Timsina B, Satyan KB, Manohar SH (2017) A comparative assessment of morphological and molecular diversity among Sechium edule (Jacq.) Sw. accessions in India. Biotechnol 7(2):1–8. https://doi.org/10.1007/s13205-017-0726-5

    Article  Google Scholar 

  • Jeffrey C (1966) Notes on the compositae: I. The cichorieae in East Tropical Africa. Kew Bull 18:427–486

    Article  Google Scholar 

  • Johnson HW, Robinson H, Comstock R (1955) Estimates of genetic and environmental variability in soybeans. Agron J 47:314–318

    Article  Google Scholar 

  • Kim KH, Kim YH, Lee KR (2007) Isolation of quinic acid derivatives and flavonoids from the aerial parts of Lactuca indica L. and their hepatoprotective activity in vitro. Bioorg Med Chem Lett 17:6739–6743. https://doi.org/10.1016/j.bmcl.2007.10.046

    Article  CAS  PubMed  Google Scholar 

  • Kim J-M, Kim J-N, Lee K-S, Shin S-R, Yoon K-Y (2012) Comparison of physicochemical properties of wild and cultivated Lactuca indica. J Korean Soc Food Sci Nutr 41:526–532

    Article  CAS  Google Scholar 

  • Kumar S, Nair N (2013) Genetic variation and phylogenetic relationships among Indian citrus taxa revealed by DAMDPCR markers. Genet Resour Crop Evol 60:1777–1800. https://doi.org/10.1007/s10722-013-9954-7

    Article  Google Scholar 

  • Kwon S, Simko I, Hellier B, Mou B, Hu J (2013) Genome-wide association of 10 horticultural traits with expressed sequence tag-derived SNP markers in a collection of lettuce lines. Crop J 1:25–33. https://doi.org/10.1016/j.cj.2013.07.014

    Article  Google Scholar 

  • Lebeda A, Dolezalová I, Kitner M, Novotná A, Smachova P, Widrlechner M (2010) North American continent-a new source of wild Lactuca spp. germplasm variability for future lettuce breeding. In: XXVIII International Horticultural Congress on Science and Horticulture for People (IHC2010): III International Symposium on 918, pp 475–482

  • Lebeda A, Dolezalova I, Kristkova E, Kitner M, Petrzelova I, Mieslerova B, Novotna A (2009) Wild Lactuca germplasm for lettuce breeding: current status, gaps and challenges. Euphytica 170:15–34. https://doi.org/10.1007/s10681009-9914-7

    Article  Google Scholar 

  • Lebeda A, Kitner M, Kristova E, Dolezalova I, Beharav A (2012) Genetic polymorphism in Lactuca aculeata populations and occurrence of natural putative hybrids between L. aculeata and L. serriola. Biochm System Ecol 42:113–123. https://doi.org/10.1016/j.bse.2012.02.008

    Article  CAS  Google Scholar 

  • Lin C-C, Kan W-S (1990) Medicinal plants used for the treatment of hepatitis in Taiwan. Am J Chin Med 18:35–43

    Article  CAS  Google Scholar 

  • Lindqvist K (1958) Inheritance of lobed leaf form in Lactuca. Hereditas 44:347–377

    Article  Google Scholar 

  • Michalska K, Stojakowska A, Malarz J, Dolezalova I, Lebeda A, Kisiel W (2009) Systematic implications of sesquiterpene lactones in Lactuca species. Biochem Syst Ecol 37:174–179

    Article  CAS  Google Scholar 

  • Mou B (2011) Mutations in lettuce improvement. Int J Plant Genom 2:1–7

    Google Scholar 

  • Niinemets U (2015) Is there a species spectrum within the world wide leaf economics spectrum? Major variations in leaf functional traits in the Mediterranean sclerophyll Quercus ilex. New Phytol 205:79–96. https://doi.org/10.1111/nph.13001

    Article  PubMed  Google Scholar 

  • Ogbodo E, Okorie P, Utobo E (2010) Growth and yield of lettuce (Lactuca sativa L.) at Abakaliki agro-ecological zone of southeastern Nigeria. World J Agri Sci 6:141–148

    Google Scholar 

  • Ohwi J (1984) Flora of Japan A combined much revised, and extended translation by the author of his Flora of Japan (1953) and Flora of Japan: Pteridophyta (1957). In: Meyer FG, Walker EH (eds) Flora of Japan. Smithsonian Inst, Washington, p 461

  • Oliya BK, Kim MY, Lee SH (2018) Development of genic-SSR markers and genetic diversity of Indian lettuce (Lactuca indica L.) in South Korea Genes & genomics. Science 40:615–623. https://doi.org/10.1007/s13258-018-0660-x

    Article  CAS  Google Scholar 

  • Oliya BK, Kim MY, Lee SH (2021) In vitro propagation, lactucin quantification, and antibacterial activity of Indian lettuce (Lactuca indica L.). In Vitro Cell Dev Biol-Plant. https://doi.org/10.1007/s11627-021-10234-9

    Article  Google Scholar 

  • Ryder EJ, Milligan DC (2005) Additional genes controlling flowering time in Lactuca sativa and L. serriola. J Am Soc Hort Sci 130:448–453. https://doi.org/10.21273/JASHS.130.3.448

    Article  CAS  Google Scholar 

  • Seyedimoradi H, Talebi R, Hassani D, Karami F (2012) Comparative genetic diversity analysis in Iranian local grapevine cultivars using ISSR and DAMD molecular markers. Environ Exp Bot 10:125–132

    Google Scholar 

  • Syukur M, Sujiprihati S, Yunianti R (2012) Teknik pemuliaan tanaman. Penebar Swadaya Jakarta 348

  • Thompson RC, Whitaker TW, Kosar WF (1941) Interspecific genetic relationships in Lactuca. J Agric Res 63:91–107

    Google Scholar 

  • Uwimana B, Smulders MJM, Hooftman DAP, Hartman Y, van Tienderen PH, Jansen J, McHale LK, Michelmore RW, van de Wiel CMM, Visser RGF (2012) Hybridization between crops and wild relatives: the contribution of cultivated lettuce to the vigour of crop–wild hybrids under drought, salinity and nutrient deficiency conditions. Theor Appl Genet 125:1097–1111. https://doi.org/10.1007/s00122-012-1897-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Nocker S, Gardiner SE (2014) Breeding better cultivars, faster: applications of new technologies for the rapid deplopment of superior horticultural tree crops. Hort Res 1:14022. https://doi.org/10.1038/hortres.2014.22

    Article  Google Scholar 

  • Van Treuren R, Van der Arend A, Schut J (2013) Distribution of downy mildew (Bremia lactucae Regel) resistances in a genebank collection of lettuce and its wild relatives. Plant Gen Resour 11:15–25. https://doi.org/10.1017/S1479262111000761

    Article  CAS  Google Scholar 

  • Wang SY, Chang HN, Lin KT, Lo CP, Yang NS, Shyur LF (2003) Antioxidant properties and phytochemical characteristics of extracts from Lactuca indica. J Agric Food Chem 51:1506–1512. https://doi.org/10.1021/jf0259415

    Article  CAS  PubMed  Google Scholar 

  • Ward JH Jr (1963) Hierarchical grouping to optimize an objective function. J Am Stat Assoc 58(301):236–244

    Article  Google Scholar 

  • Wright IJ, Reich PB, Cornelissen JHC, Falster DS, Groom PK, Hikosaka K, Lee W, Lusk CH, Niinemets U, Oleksyn J, Osada N (2005) Modulation of leaf economic traits and trait relationships by climate. Global Ecol Biogeogr 14:411–421

    Article  Google Scholar 

  • Wright IJ, Reich PB, Westoby M, Ackerly DD, Bongers BZ, F, Cavender-Bares J, Chapin T, Cornelissen JH, Diemer M, Flexas J, (2004) The worldwide leaf economics spectrum. Nature 428:821

    Article  CAS  Google Scholar 

  • Zhang L, Su W, Tao R, Zhang W, Chen J, Wu P, Yan C, Jia Y, Larkin RM, Lavelle D, Truco MJ (2017) RNA sequencing provides insights into the evolution of lettuce and the regulation of flavonoid biosynthesis. Nat Commun 8:2264

    Article  Google Scholar 

  • Zhang Z, Xie W, Zhang J, Zhao X, Zhao Y, Wang Y (2018) Phenotype-and SSR-based estimates of genetic variation between and within two important Elymus Species in Western and Northern China. Genes 9:147

    Article  Google Scholar 

Download references

Acknowledgements

This work was carried out with the support of the Cooperative Research Program for Agriculture Science and Technology Development (project no. PJ01589402) from the Rural Development Administration, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bal Kumari Oliya or Suk-Ha Lee.

Ethics declarations

Conflict of interest

All co-authors of this paper declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2590 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oliya, B.K., Kim, M.Y., Ha, J. et al. Analysis of genetic variability and agronomic performance of Indian lettuce (Lactuca indica L.). Genet Resour Crop Evol 69, 1313–1327 (2022). https://doi.org/10.1007/s10722-021-01306-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-021-01306-1

Keywords

Navigation