Skip to main content

Advertisement

Log in

Mannose-specific plant and microbial lectins as antiviral agents: A review

  • Review
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Lectins are non-immunological carbohydrate-binding proteins classified on the basis of their structure, origin, and sugar specificity. The binding specificity of such proteins with the surface glycan moiety determines their activity and clinical applications. Thus, lectins hold great potential as diagnostic and drug discovery agents and as novel biopharmaceutical products. In recent years, significant advancements have been made in understanding plant and microbial lectins as therapeutic agents against various viral diseases. Among them, mannose-specific lectins have being proven as promising antiviral agents against a variety of viruses, such as HIV, Influenza, Herpes, Ebola, Hepatitis, Severe Acute Respiratory Syndrome Coronavirus-1 (SARS-CoV-1), Middle Eastern Respiratory Syndrome Coronavirus (MERS-CoV) and most recent Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2). The binding of mannose-binding lectins (MBLs) from plants and microbes to high-mannose containing N-glycans (which may be simple or complex) of glycoproteins found on the surface of viruses has been found to be highly specific and mainly responsible for their antiviral activity. MBLs target various steps in the viral life cycle, including viral attachment, entry and replication. The present review discusses the brief classification and structure of lectins along with antiviral activity of various mannose-specific lectins from plants and microbial sources and their diagnostic and therapeutic applications against viral diseases.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Smith, K.M., Machalaba, C.C., Seifman, R., Feferholtz, Y., Karesh, W.B.: Infectious disease and economics: The case for considering multi-sectoral impacts. One Health. 7, 100080 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bloom, D.E., Black, S., Rappuoli, R.: Emerging infectious diseases: A proactive approach. Proc. Natl. Acad. Sci. U.S.A. 114(16), 4055–4059 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Friedrich, M.J.: WHO’s top health threats for 2019. JAMA 321(11), 1041 (2019)

    PubMed  Google Scholar 

  4. Kausar, S., Said Khan, F., Ishaq Mujeeb Ur Rehman, M., Akram, M., Riaz, M., Rasool, G., Hamid Khan, A., Saleem, I., Shamim, S., Malik, A.: A review: Mechanism of action of antiviral drugs. Int. J. Immunopathol. Pharmacol. 35, 20587384211002621 (2021)

  5. Elfakharany, E., Gerges, M., Behery, E., Mohsen, A., Belald, F.: COVID-19 coronavirus: Pathogenesis, clinical features, diagnostics, epidemiology, prevention and control. Appl. Pharm. 12, 65–66 (2020)

    Google Scholar 

  6. Oroojalian, F., Haghbin, A., Baradaran, B., Hemmat, N., Shahbazi, M.A., Baghi, H.B., Mokhtarzadeh, A., Hamblin, M.R.: Novel insights into the treatment of SARS-CoV-2 infection: an overview of current clinical trials. Int. J. Biol. Macromol. 165, 18–43 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Maginnis, M.S.: Virus–receptor interactions: the key to cellular invasion. J. Mol. Biol. 430(17), 2590–2611 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nassar, A., Ibrahim, I.M., Amin, F.G., Magdy, M., Elgharib, A.M., Azzam, E.B., Nasser, F., Yousry, K., Shamkh, I.M., Mahdy, S.M., Elfiky, A.A.: A review of human coronaviruses’ receptors: the host-cell targets for the crown bearing viruses. Molecules 26(21), 6455 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nabi-Afjadi, M., Heydari, M., Zalpoor, H., Arman, I., Sadoughi, A., Sahami, P., Aghazadeh, S.: Lectins and lectibodies: potential promising antiviral agents. Cell. Mol. Biol. Lett. 27(1), 1–25 (2022)

    Article  Google Scholar 

  10. Mazalovska, M., Kouokam, J.C.: Lectins as promising therapeutics for the prevention and treatment of HIV and other potential coinfections. Biomed Res. Int. (2018)

  11. Kachko, A., Loesgen, S., Shahzad-ul-Hussan, S., Tan, W., Zubkova, I., Takeda, K., Wells, F., Rubin, S., Bewley, C.A., Major, M.E.: Inhibition of hepatitis C virus by the cyanobacterial protein Microcystis viridis lectin: mechanistic differences between the high-mannose specific lectins MVL, CV-N, and GNA. Mol. Pharm. 10(12), 4590–4602 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Saad, M.H., Sidkey, N.M., Khan, R.H., El-Fakharany, E.M.: Nostoc muscorum is a novel source of microalgal lectins with potent antiviral activity against herpes simplex type-1. Int. J. Biol. Macromol. 210, 415–429 (2022)

    Article  CAS  PubMed  Google Scholar 

  13. Thompson, A.J., Cao, L., Ma, Y., Wang, X., Diedrich, J.K., Kikuchi, C., Willis, S., Worth, C., McBride, R., Yates, J.R., III., Paulson, J.C.: Human influenza virus hemagglutinins contain conserved oligomannose N-linked glycans allowing potent neutralization by lectins. Cell Host Microbe 27(5), 725–735 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kaur, A., Kamboj, S.S., Singh, J., Singh, R., Abrahams, M., Kotwal, G.J., Saxena, A.K.: Purification of 3 monomeric monocot mannose-binding lectins and their evaluation for antipoxviral activity: potential applications in multiple viral diseases caused by enveloped viruses. Biochem. Cell Biol. 85(1), 88–95 (2007)

    Article  CAS  PubMed  Google Scholar 

  15. Favacho, A.R., Cintra, E.A., Coelho, L.C., Linhares, M.I.: In vitro activity evaluation of Parkia pendula seed lectin against human cytomegalovirus and herpes virus 6. Biol. 35(3), 189–194 (2007)

    Article  CAS  Google Scholar 

  16. Ooi, L.S., Ho, W.S., Ngai, K.L., Tian, L., Chan, P.K., Sun, S.S., Ooi, V.E.: Narcissus tazetta lectin shows strong inhibitory effects against respiratory syncytial virus, influenza A (H1N1, H3N2, H5N1) and B viruses. J. Biosci. 1, 95–103 (2010)

    Article  Google Scholar 

  17. Covés-Datson, E.M., Dyall, J., DeWald, L.E., King, S.R., Dube, D., Legendre, M., Nelson, E., Drews, K.C., Gross, R., Gerhardt, D.M., Torzewski, L.: Inhibition of Ebola virus by a molecularly engineered banana lectin. PLoS Negl. Trop. Dis. 13(7), e0007595 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ahmed, M.N., Jahan, R., Nissapatorn, V., Wilairatana, P., Rahmatullah, M.: Plant lectins as prospective antiviral biomolecules in the search for COVID-19 eradication strategies. Biomed. Pharmacother. 146, 112507 (2022)

    Article  CAS  PubMed  Google Scholar 

  19. Lagarda-Diaz, I., Guzman-Partida, A.M., Vazquez-Moreno, L.: Legume lectins: proteins with diverse applications. Int. J. Mol. Sci. 18(6), 1242 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  20. Dias, R.D., Machado, L.D., Migliolo, L., Franco, O.L.: Insights into animal and plant lectins with antimicrobial activities. Molecules 20(1), 519–541 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  21. Santos, A.F., Da Silva, M.D., Napoleão, T.H., Paiva, P.M., Correia, M.D., Coelho, L.C.: Lectins: Function, structure, biological properties andpotential applications. Curr. Top. Pept. Protein Res. (2014)

  22. Jandú, J.J., Moraes Neto, R.N., Zagmignan, A., de Sousa, E.M., Brelaz-de-Castro, M.C., dos Santos Correia, M.T., da Silva, L.C.: Targeting the immune system with plant lectins to combat microbial infections. Front. Pharmacol. 8, 671 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  23. O’Keefe, B.R., Shenoy, S.R., Xie, D., Zhang, W., Muschik, J.M., Currens, M.J., Chaiken, I., Boyd, M.R.: Analysis of the interaction between the HIV-inactivating protein cyanovirin-N and soluble forms of the envelope glycoproteins gp120 and gp41. Mol. Pharmacol. 58(5), 982–992 (2000)

    Article  CAS  PubMed  Google Scholar 

  24. Bokesch, H.R., O’Keefe, B.R., McKee, T.C., Pannell, L.K., Patterson, G.M., Gardella, R.S., Sowder, R.C., Turpin, J., Watson, K., Buckheit, R.W., Boyd, M.R.: A potent novel anti-HIV protein from the cultured cyanobacterium Scytonema varium. Biochem. 42(9), 2578–2584 (2003)

  25. Botos, I., Wlodawer, A.: Cyanovirin-N: a sugar-binding antiviral protein with a new twist. Cell. Mol. Life Sci. 60(2), 277–287 (2003)

    Article  CAS  PubMed  Google Scholar 

  26. Barre, A., Bourne, Y., Van Damme, E.J., Rougé, P.: Overview of the structure–function relationships of mannose-specific lectins from plants, algae and fungi. Int. J. Mol. Sci. 20(2), 254 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  27. Barre, A., Van Damme, E.J., Simplicien, M., Le Poder, S., Klonjkowski, B., Benoist, H., Peyrade, D., Rougé, P.: Man-specific lectins from plants, fungi, algae and cyanobacteria, as potential blockers for SARS-CoV, MERS-CoV and SARS-CoV-2 (COVID-19) coronaviruses: Biomedical perspectives. Cells 10(7), 1619 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Van Damme, E.J., Smeets, K., Peumans, W.J.: The mannose-binding monocot lectins and their genes. Lect. Biomed. pers. 27, 59–80 (1995)

    Google Scholar 

  29. Stewart-Jones, G.B., Soto, C., Lemmin, T., Chuang, G.Y., Druz, A., Kong, R., Thomas, P.V., Wagh, K., Zhou, T., Behrens, A.J., Bylund, T.: Trimeric HIV-1-Env structures define glycan shields from clades A, B, and G. Cell 165(4), 813–826 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Davenport, Y.W., West, A.P., Jr., Bjorkman, P.J.: Structure of an HIV-2 gp120 in complex with CD4. Virol. J. 90(4), 2112–2118 (2016)

    Article  CAS  Google Scholar 

  31. Bonomelli, C., Doores, K.J., Dunlop, D.C., Thaney, V., Dwek, R.A., Burton, D.R., Crispin, M., Scanlan, C.N.: The glycan shield of HIV is predominantly oligomannose independently of production system or viral clade. PLoS ONE 6(8), e23521 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Shajahan, A., Pepi, L.E., Rouhani, D.S., Heiss, C., Azadi, P.: Glycosylation of SARS-CoV-2: structural and functional insights. Anal. Bioanal. Chem. 413(29), 7179–7193 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cai, Y., Xu, W., Gu, C., Cai, X., Qu, D., Lu, L., Xie, Y., Jiang, S.: Griffithsin with a broad-spectrum antiviral activity by binding glycans in viral glycoprotein exhibits strong synergistic effect in combination with a pan-coronavirus fusion inhibitor targeting SARS-CoV-2 spike S2 subunit. Virol. Sin. 35(6), 857–860 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Watanabe, Y., Bowden, T.A., Wilson, I.A., Crispin, M.: Exploitation of glycosylation in enveloped virus pathobiology. Biochim. Biophys. Acta - Gen. Subj. 1863(10), 1480–1497 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Seal, S., Dharmarajan, G., Khan, I.: Evolution of pathogen tolerance and emerging infections: A missing experimental paradigm. Elife. 10, e68874 (2021)

  36. Kolchinsky, P., Kiprilov, E., Sodroski, J.: Increased neutralization sensitivity of CD4-independent human immunodeficiency virus variants. Virol. J. 75(5), 2041–2050 (2001)

    Article  CAS  Google Scholar 

  37. Peumans, W.J., Van Damme, E.J.: Lectins as plant defense proteins. Plant Physiol. 109(2), 347 (1995)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wright, C.S.: New folds of plant lectins. Curr. Opin. Struct. Biol. 7(5), 631–636 (1997)

    Article  CAS  PubMed  Google Scholar 

  39. Taylor, M., Drickamer, K., Imberty, A., van Kooyk, Y., Schnaar, R., Etzler, M., Varki, A.: Discovery and classification of glycan-binding proteins. Essentials of Glycobiology (2022)

  40. Van Parijs, J., Broekaert, W.F., Goldstein, I.J., Peumans, W.J.: Hevein: an antifungal protein from rubber-tree (Hevea brasiliensis) latex. Planta 183(2), 258–264 (1991)

    Article  PubMed  Google Scholar 

  41. Van Damme, E.J., Balzarini, J., Smeets, K., van Leuven, F., Peumans, W.J.: The monomeric and dimeric mannose-binding proteins from the Orchidaceae species Listera ovata and Epipactis helleborine: sequence homologies and differences in biological activities. Glycoconj. J. 4, 321–332 (1994)

    Article  Google Scholar 

  42. Sumner, J.B.: The globulins of the jack bean, Canavalia ensiformis: preliminary paper. J. Biol. Chem. 37(1), 137–142 (1919)

    Article  CAS  Google Scholar 

  43. Naismith, J.H., Emmerich, C., Habash, J., Harrop, S.J., Helliwell, J.R., Hunter, W.N., Raftery, J., Yariv, J.: Refined structure of concanavalin A complexed with methyl α-D-mannopyranoside at 2.0 Å resolution and comparison with the saccharide-free structure. Acta Crystallogr., Sect. D: Biol. Crystallogr. 50(6), 847–858 (1994)

  44. Ravishankar, R., Thomas, C.J., Suguna, K., Surolia, A., Vijayan, M.: Crystal structures of the peanut lectin–lactose complex at acidic pH: Retention of unusual quaternary structure, empty and carbohydrate bound combining sites, molecular mimicry and crystal packing directed by interactions at the combining site. Proteins: Struct. Funct. Bioinfo. 43(3), 260–270 (2001)

  45. Rutenber, E., Robertus, J.D.: Structure of ricin B‐chain at 2.5 Å resolution. Proteins: Struct. Funct. Bioinfo. 10(3), 260–269 (1991)

  46. Bah, C.S., Fang, E.F., Ng, T.B.: Medicinal applications of plant lectins. Antitumor potential and other emerging medicinal properties of natural compounds. 55–74 (2013)

  47. Mishra, A., Behura, A., Mawatwal, S., Kumar, A., Naik, L., Mohanty, S.S., Manna, D., Dokania, P., Mishra, A., Patra, S.K., Dhiman, R.: Structure-function and application of plant lectins in disease biology and immunity. Food Chem. Toxicol. 134, 110827 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Van Damme, E.J., Lannoo, N., Peumans, W.J.: Plant lectins. In Advances in botanical research. Acad. Press. 48, 107–209 (2008)

  49. Van Holle, S., Van Damme, E.J.: Messages from the past: New insights in plant lectin evolution. Front. Plant Sci. 10, 36 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  50. Nakamura-Tsuruta, S., Kominami, J., Kuno, A., Hirabayashi, J.: Evidence that Agaricus bisporus agglutinin (ABA) has dual sugar-binding specificity. Biochem. Biophys. Res. Commun. 347(1), 215–220 (2006)

    Article  CAS  PubMed  Google Scholar 

  51. Carrizo, M.E., Capaldi, S., Perduca, M., Irazoqui, F.J., Nores, G.A., Monaco, H.L.: The anti neoplastic lectin of the common edible mushroom (Agaricus bisporus) has two binding sites, each specific for a different configuration at a single epimeric hydroxyl. J. Biol. Chem. 280, 10614–10623 (2005)

    Article  CAS  PubMed  Google Scholar 

  52. Rinderle, S.J., Goldstein, I.J., Matta, K.L., Ratcliffe, R.M.: Isolation and characterization of amaranthin, a lectin present in the seeds of Amaranthus caudatus, that recognizes the T-(or cryptic T)-antigen. J. Biol. Chem. 264(27), 16123–16131 (1989)

    Article  CAS  PubMed  Google Scholar 

  53. Transue, T.R., Smith, A.K., Mo, H., Goldstein, I.J., Saper, M.A.: Structure of benzyl T-antigen disaccharide bound to Amaranthus caudatus agglutinin. Nat. Struct. Mol. Biol. 4(10), 779–783 (1997)

    Article  CAS  Google Scholar 

  54. Dang, L., Rougé, P., Van Damme, E.J.M.: Amaranthin–like proteins with aerolysin domains in plants. Front. Plant Sci. 8, 1368 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  55. Van Damme, E.J., Culerrier, R., Barre, A., Alvarez, R., Rougé, P., Peumans, W.J.: A novel family of lectins evolutionarily related to class V chitinases: an example of neofunctionalization in legumes. J. Plant Physiol. 144(2), 662–672 (2007)

    Article  Google Scholar 

  56. Boyd, M.R., Gustafson, K.R., McMahon, J.B., Shoemaker, R.H., O’Keefe, B.R., Mori, T., Gulakowski, R.J., Wu, L., Rivera, M.I., Laurencot, C.M., Currens, M.J.: Discovery of cyanovirin-N, a novel human immunodeficiency virus-inactivating protein that binds viral surface envelope glycoprotein gp120: potential applications to microbicide development. Antimicrob. Agents Chemother. 41(7), 1521–1530 (1997)

  57. Gustafson, K.R., Sowder, R.C., II., Henderson, L.E., Cardellina, J.H., II., McMahon, J.B., Rajamani, U., Pannell, L.K., Boyd, M.R.: Isolation, primary sequence determination, and disulfide bond structure of cyanovirin-N, an anti-HIV (human immunodeficiency virus) protein from the CyanobacteriumNostoc ellipsosporum. Biochem. Biophys. Res. Commun. 238(1), 223–228 (1997)

    Article  CAS  PubMed  Google Scholar 

  58. Percudani, R., Montanini, B., Ottonello, S.: The anti‐HIV cyanovirin‐N domain is evolutionarily conserved and occurs as a protein module in eukaryotes. Proteins: Struct. Funct. Genet. 60(4), 670–678 (2005)

  59. Tsaneva, M., Van Damme, E.J.: 130 years of plant lectin research. Glycoconj. J. 37, 533–551 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Pacak, F., Kocourek, J.: Studies on phytohemagglutinins: xxv. Isolation and characterization of hemagglutinins of the spindle tree seeds (Evonymus europaea L.). Biochim Biophys Acta Proteins Proteom. 400(2), 374–386 (1975)

  61. Petryniak, J., Pereira, M.E., Kabat, E.A.: The lectin of Euonymus europeus: purification, characterization, and an immunochemical study of its combining site. Arch. Biochem. Biophys. 178(1), 118–134 (1977)

    Article  CAS  PubMed  Google Scholar 

  62. Van Damme, E.J., Allen, A.K., Peumans, W.J.: Isolation and characterization of a lectin with exclusive specificity towards mannose from snowdrop (Galanthus nivalis) bulbs. FEBS Lett. 215(1), 140–144 (1987)

    Article  Google Scholar 

  63. Barre, A., Van Damme, E.J., Peumans, W.J., Rouge, P.: Structure-function relationship of monocot mannose-binding lectins. Plant Physiol. 112(4), 1531–1540 (1996)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Peumans, W.J., Barre, A., Bras, J., Rougé, P., Proost, P., Van Damme, E.J.: The liverwort contains a lectin that is structurally and evolutionary related to the monocot mannose-binding lectins. Plant physiol. 129(3), 1054–1065 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Sastry, M.V., Banarjee, P., Patanjali, S.R., Swamy, M.J., Swarnalatha, G.V., Surolia, A.: Analysis of saccharide binding to Artocarpus integrifolia lectin reveals specific recognition of T-antigen (beta-D-Gal (1–3) D-GalNAc). J. Biol. Chem. 261(25), 11726–11733 (1986)

    Article  CAS  PubMed  Google Scholar 

  66. Bourne, Y., Astoul, C.H., Zamboni, V., Peumans, W.J., Menu-Bouaouiche, L., Van Damme, E.J., Barre, A., Rougé, P.: Structural basis for the unusual carbohydrate-binding specificity of jacalin towards galactose and mannose. Biochem. J. 364(1), 173–180 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Bourne, Y., Zamboni, V., Barre, A., Peumans, W.J., Van Damme, E.J., Rougé, P.: Helianthus tuberosus lectin reveals a widespread scaffold for mannose-binding lectins. Struct. 7(12), 1473–1482 (1999)

    Article  CAS  Google Scholar 

  68. Sankaranarayanan, R., Sekar, K., Banerjee, R., Sharma, V., Surolia, A., Vijayan, M.: A novel mode of carbohydrate recognition in jacalin, a Moraceae plant lectin with a β-prism fold. Struct. Mol. Biol. 3(7), 596–603 (1996)

    Article  CAS  Google Scholar 

  69. Sarkar, M., Wu, A.M., Kabat, E.A.: Immunochemical studies on the carbohydrate specificity of Maclura pomifera lectin. Arch. Biochem. Biophys. 209(1), 204–218 (1981)

    Article  CAS  PubMed  Google Scholar 

  70. Van Damme, E.J., Barre, A., Mazard, A.M., Verhaert, P., Horman, A., Debray, H., Rouge, P., Peumans, W.J.: Characterization and molecular cloning of the lectin from Helianthus tuberosus. European J. Biochem. 259(1–2), 135–142 (1999)

    Article  Google Scholar 

  71. Peumans, W.J., Winter, H.C., Bemer, V., Van Leuven, F., Goldstein, I.J., Truffa-Bachi, P., Van Damme, E.J.: Isolation of a novel plant lectin with an unusual specificity from Calystegia sepium. Glycoconj. J. 14(2), 259–265 (1997)

    Article  CAS  PubMed  Google Scholar 

  72. El-Araby, M.M., El-Shatoury, E.H., Soliman, M.M., Shaaban, H.F.: Characterization and antimicrobial activity of lectins purified from three Egyptian leguminous seeds. AMB Exp. 10, 1–4 (2020)

    Google Scholar 

  73. Mitchell, C.A., Ramessar, K., O’Keefe, B.R.: Antiviral lectins: Selective inhibitors of viral entry. Antiviral Res. 142, 37–54 (2017)

  74. Costa, A., Malveira, E.A., Mendonça, L.P., Maia, M.E., Silva, R.R., Roma, R.R., Aguiar, T.K., Grangeiro, Y.A., Souza, P.F.: Plant Lectins: A Review on their Biotechnological Potential Toward Human Pathogens. Curr. Protein Pept. Sci. 23(12), 851–861 (2022)

    Article  CAS  PubMed  Google Scholar 

  75. Peumans, W.J., Van Damme, J.M., Barre, A., Rougé, P.: Classification of plant lectins in families of structurally and evolutionary related proteins. Mol. Immun. Compl. Carb. 2, 27–54 (2001)

    Google Scholar 

  76. Bateman, A., Bycroft, M.: The structure of a LysM domain from E. coli membrane-bound lytic murein transglycosylase D (MltD). J. Mol. Biol. 299, 1113–1119 (2000)

  77. Lannoo, N., Vandenborre, G., Miersch, O., Smagghe, G., Wasternack, C., Peumans, W.J., Van Damme, E.J.: The jasmonate-induced expression of the Nicotiana tabacum leaf lectin. Plant Cell Physiol. 48(8), 1207–1218 (2007)

    Article  CAS  PubMed  Google Scholar 

  78. Schouppe, D., Rougé, P., Lasanajak, Y., Barre, A., Smith, D.F., Proost, P., Van Damme, E.J.M.: Mutational analysis of the carbohydrate binding activity of the tobacco lectin. Glycoconj. J. 27, 613–623 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Stirpe, F., Battelli, M.G.: Ribosome-inactivating proteins: progress and problems. Cell. Mol. Life Sci. 63, 1850–1866 (2006)

    Article  CAS  PubMed  Google Scholar 

  80. Barbieri, L., Battelli, M.G., Stirpe, F.: Ribosome-inactivating proteins from plants. Biochim. Biophys. Acta. Biomembr. Bba-Biomembr. 1154(3–4), 237–282 (1993)

    Article  CAS  Google Scholar 

  81. Chan, W.Y., Ng, T.B.: Comparison of the Embryotoxic Effects of Saporin, Agrostin (Type 1 Ribosome-Inactivating Proteins) and Ricin (a Type 2 Ribosome-Inactivating Protein. J. Pharmacol. Toxicol. 88(6), 300–303 (2001)

    Article  CAS  Google Scholar 

  82. Barre, A., Simplicien, M., Benoist, H., Van Damme, E.J., Rougé, P.: Mannose-specific lectins from marine algae: diverse structural scaffolds associated to common virucidal and anti-cancer properties. Mar. Drugs 17(8), 440 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Notova, S., Bonnardel, F., Lisacek, F., Varrot, A., Imberty, A.: Structure and engineering of tandem repeat lectins. Curr. Opin. Struct. Biol. 62, 39–47 (2020)

    Article  CAS  PubMed  Google Scholar 

  84. Hirabayashi, J., Arai, R.: Lectin engineering: the possible and the actual. J. R. Soc. Interface. Foc. 9(2), 20180068 (2019)

    Article  Google Scholar 

  85. Agrawal, B.B., Goldstein, I.J.: Physical and chemical characterization of concanavalin A, the hemagglutinin from jack bean (Canavalia ensiformis). Biochim. Biophys. Acta 133(2), 376–379 (1967)

    Article  CAS  PubMed  Google Scholar 

  86. Pratap, J.V., Jeyaprakash, A.A., Rani, P.G., Sekar, K., Surolia, A., Vijayan, M.: Crystal structures of artocarpin, a Moraceae lectin with mannose specificity, and its complex with methyl-α-D-mannose: implications to the generation of carbohydrate specificity. J. Mol. Biol. 317(2), 237–247 (2002)

    Article  CAS  PubMed  Google Scholar 

  87. Baumann, C.M., Strosberg, A.D., Rüdiger, H.: Purification and Characterization of a Mannose/Glucose-Specific Lectin from Vicia cracca. European J. Biochem. 122(1), 105–110 (1982)

    Article  CAS  Google Scholar 

  88. Chowdhury, S., Ahmed, H., Chatterjee, B.P.: Chemical modification studies of Artocarpus lakoocha lectin artocarpin. Biochimie 73(5), 563–571 (1991)

    Article  CAS  PubMed  Google Scholar 

  89. Mann, K., Farias, C.M., Del Sol, F.G., Santos, C.F., Grangeiro, T.B., Nagano, C.S., Cavada, B.S., Calvete, J.J.: The amino-acid sequence of the glucose/mannose-specific lectin isolated from Parkia platycephala seeds reveals three tandemly arranged jacalin-related domains. European J. Biochem. 268(16), 4414–4422 (2001)

    Article  CAS  Google Scholar 

  90. Antonyuk, V.O.: Integrated use of the jerusalem artichoke (Helianthus tuberosus L.) tubers: purification of inulin, fructose and mannosespecific lectin. FARM ZH. (3), 50–60 (2014)

  91. Kaku, H., Van Damme, E.J., Peumans, W.J., Goldstein, I.J.: Carbohydrate-binding specificity of the daffodil (Narcissus pseudonarcissus) and amaryllis (Hippeastrum hybr.) bulb lectins. Arch. Biochem. Biophys. 279(2), 298–304 (1990)

  92. Spiwok, V.: CH/π interactions in carbohydrate recognition. Mol. 22(7), 1038 (2017)

    Google Scholar 

  93. Yan, R., Zhang, Y., Li, Y., Xia, L., Guo, Y., Zhou, Q.: Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science 367(6485), 1444–1448 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Watanabe, Y., Bowden, T.A., Wilson, I.A., Crispin, M.: Exploitation of glycosylation in enveloped virus pathobiology. Biochim. Biophys. Acta. Gen. Subj. BBA-Gen. Subjects. 1863(10), 1480–1497 (2019)

  95. Zhou, D., Tian, X., Qi, R., Peng, C., Zhang, W.: Identification of 22 N-glycosites on spike glycoprotein of SARS-CoV-2 and accessible surface glycopeptide motifs: Implications for vaccination and antibody therapeutics. Glycobiol. J. 31(1), 69–80 (2021)

    CAS  Google Scholar 

  96. Cipollo, J.F., Parsons, L.M.: Glycomics and glycoproteomics of viruses: Mass spectrometry applications and insights toward structure–function relationships. Mass Spectrom. Rev. 39(4), 371–409 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Ohyama, Y., Nakajima, K., Renfrow, M.B., Novak, J., Takahashi, K.: Mass spectrometry for the identification and analysis of highly complex glycosylation of therapeutic or pathogenic proteins. Expert Rev. Proteomics 17(4), 275–296 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Carbaugh, D.L., Lazear, H.M.: Flavivirus envelope protein glycosylation: impacts on viral infection and pathogenesis. J. Virol. 94(11), e00104-e120 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Vankadari, N., Wilce, J.A.: Emerging COVID-19 coronavirus: glycan shield and structure prediction of spike glycoprotein and its interaction with human CD26. Emerg. Microb. Infect. 9(1), 601–604 (2020)

    Article  CAS  Google Scholar 

  100. Bagdonaite, I., Vakhrushev, S.Y., Joshi, H.J., Wandall, H.H.: Viral glycoproteomes: technologies for characterization and outlook for vaccine design. FEBS Lett. 592(23), 3898–3920 (2018)

    Article  CAS  PubMed  Google Scholar 

  101. Reily, C., Stewart, T.J., Renfrow, M.B., Novak, J.: Glycosylation in health and disease. Nat. Rev. Nephrol. 15(6), 346–366 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  102. Hargett, A.A., Renfrow, M.B.: Glycosylation of viral surface proteins probed by mass spectrometry Curr. Opin. Virol. 36, 56–66 (2019)

    Article  CAS  Google Scholar 

  103. Fung, T.S., Liu, D.X.: Post-translational modifications of coronavirus proteins: roles and function. Future Virol. 13(6), 405–430 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Feng, T., Zhang, J., Chen, Z., Pan, W., Chen, Z., Yan, Y., Dai, J.: Glycosylation of viral proteins: Implication in virus–host interaction and virulence. Virulence. 13(1), 670–683 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Tortorici, M.A., Walls, A.C., Lang, Y., Wang, C., Li, Z., Koerhuis, D., Boons, G.J., Bosch, B.J., Rey, F.A., de Groot, R.J., Veesler, D.: Structural basis for human coronavirus attachment to sialic acid receptors. Nat. Struct. Mol. Biol. 26(6), 481–489 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  106. Bagdonaite, I., Wandall, H.H.: Global aspects of viral glycosylation. Glycobiology 28(7), 443–467 (2018)

    Article  CAS  PubMed  Google Scholar 

  107. Wang, D.: Coronaviruses’ sugar shields as vaccine candidates. Trends Immunol. 21, 17 (2020)

    CAS  Google Scholar 

  108. Zhao, H., To, K.K., Sze, K.H., Yung, T.T., Bian, M., Lam, H., Yeung, M.L., Li, C., Chu, H., Yuen, K.Y.: A broad-spectrum virus-and host-targeting peptide against respiratory viruses including influenza virus and SARS-CoV-2. Nat. Commun. 11(1), 4252 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Mathys, L., François, K.O., Quandte, M., Braakman, I., Balzarini, J.: Deletion of the highly conserved N-glycan at Asn260 of HIV-1 gp120 affects folding and lysosomal degradation of gp120, and results in loss of viral infectivity. PLoS ONE 9(6), e101181 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  110. Quiñones-Kochs, M.I., Buonocore, L., Rose, J.K.: Role of N-linked glycans in a human immunodeficiency virus envelope glycoprotein: effects on protein function and the neutralizing antibody response. J. Virol. 76(9), 4199–4211 (2002)

    Article  PubMed  PubMed Central  Google Scholar 

  111. Helle, F., Vieyres, G., Elkrief, L., Popescu, C.I., Wychowski, C., Descamps, V., Castelain, S., Roingeard, P., Duverlie, G., Dubuisson, J.: Role of N-linked glycans in the functions of hepatitis C virus envelope proteins incorporated into infectious virions. J. Virol. 84(22), 11905–11915 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Goffard, A., Callens, N., Bartosch, B., Wychowski, C., Cosset, F.L., Montpellier, C., Dubuisson, J.: Role of N-linked glycans in the functions of hepatitis C virus envelope glycoproteins. J. Virol. 79(13), 8400–8409 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Dobrica, M.O., Lazar, C., Branza-Nichita, N.: N-glycosylation and N-glycan processing in HBV biology and pathogenesis. Cells 9(6), 1404 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  114. Lazar, C., Durantel, D., Macovei, A., Zitzmann, N., Zoulim, F., Dwek, R.A., Branza-Nichita, N.: Treatment of hepatitis B virus-infected cells with α-glucosidase inhibitors results in production of virions with altered molecular composition and infectivity. Antivir. Res. 76(1), 30–37 (2007)

    Article  CAS  PubMed  Google Scholar 

  115. Lennemann, N.J., Walkner, M., Berkebile, A.R., Patel, N., Maury, W.: The role of conserved N-linked glycans on Ebola virus glycoprotein 2. J. Infect. Dis. 204, 9 (2015)

    Google Scholar 

  116. Antoine, T.E., Park, P.J., Shukla, D.: Glycoprotein targeted therapeutics: a new era of anti-herpes simplex virus-1 therapeutics. Rev. Med. Virol. 23(3), 194–208 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Barre, A., Van Damme, E.J., Klonjkowski, B., Simplicien, M., Sudor, J., Benoist, H., Rougé, P.: Legume lectins with different specificities as potential glycan probes for pathogenic enveloped viruses. Cells 11(3), 339 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Martinez, D., Amaral, D., Markovitz, D., Pinto, L.: The use of lectins as tools to combat SARS-CoV-2. Curr. Pharm. Des. 27(41), 4212–4222 (2021)

    Article  CAS  PubMed  Google Scholar 

  119. Carneiro, D.C., Fernandez, L.G., Monteiro-Cunha, J.P., Benevides, R.G., Cunha Lima, S.T.: A patent review of the antimicrobial applications of lectins: Perspectives on therapy of infectious diseases. J. Appl. Microbiol. 132(2), 841–854 (2022)

    Article  CAS  PubMed  Google Scholar 

  120. Liu, Y., Liu, J., Pang, X., Liu, T., Ning, Z., Cheng, G.: The roles of direct recognition by animal lectins in antiviral immunity and viral pathogenesis. Molecul. 20(2), 2272–2295 (2015)

    Article  Google Scholar 

  121. Fujimoto, Y.K., Green, D.F.: Carbohydrate recognition by the antiviral lectin cyanovirin-N. J. Am. Chem. Soc. 134(48), 19639–19651 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. McGreal, E.P., Rosas, M., Brown, G.D., Zamze, S., Wong, S.Y., Gordon, S., Martinez-Pomares, L., Taylor, P.R.: The carbohydrate-recognition domain of Dectin-2 is a C-type lectin with specificity for high mannose. Glycobiol. 16(5), 422–430 (2006)

    Article  CAS  Google Scholar 

  123. Khan, H., Aziz, A.A., Sulahria, H., Khan, H., Ahmed, A., Choudhry, N., Narayanan, R., Danzig, C., Khanani, A.M.: Emerging treatment options for geographic atrophy (GA) secondary to age-related macular degeneration. Clin. Ophthalmol. 31, 321–327 (2023)

    Article  Google Scholar 

  124. Lu, J., Zhao, Z., Li, Q., Pang, Y.: Review of the unique and dominant lectin pathway of complement activation in agnathans. Dev. Comp. Immunol. 140, 104593 (2023)

    Article  CAS  PubMed  Google Scholar 

  125. Riwes, M.M., Leather, H., Neal, D., Bennett, C., Sugrue, M., Cline, C., Stokes, J., Hiemenz, J., Hsu, J., Wingard, J.R.: Association of mannose-binding lectin levels and invasive fungal disease in hematologic malignancy patients receiving myelosuppressive chemotherapy or allogeneic hematopoietic stem cell transplantation. Bone Marrow Transplant. 51(9), 1228–1232 (2016)

    Article  CAS  PubMed  Google Scholar 

  126. Shan, L.H., Lee, P.L., Chen, H.W., Chen, L.K., Kao, C.L., King, C.C.: Analysis of the steps involved in dengue virus entry into host cells. Virol. 257(1), 156–167 (1999)

    Article  Google Scholar 

  127. Upadhyay, A., Upadhyaya, I., Kollanoor-Johny, A., Venkitanarayanan, K.: Combating pathogenic microorganisms using plant-derived antimicrobials: a minireview of the mechanistic basis. Biomed Res. Int. (2014)

  128. Hwang, H.J., Han, J.W., Jeon, H., Cho, K., Kim, J.H., Lee, D.S., Han, J.W.: Characterization of a novel mannose-binding lectin with antiviral activities from red alga. Grateloupia chiangii. Biomolecul. 10(2), 333 (2020)

    Article  CAS  Google Scholar 

  129. Sato, Y., Hirayama, M., Morimoto, K., Yamamoto, N., Okuyama, S., Hori, K.: High mannose-binding lectin with preference for the cluster of α1–2-mannose from the green alga Boodlea coacta is a potent entry inhibitor of HIV-1 and influenza viruses. J. Biol. Chem. 286(22), 19446–19458 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Gupta, A., Gupta, G.S.: Status of mannose-binding lectin (MBL) and complement system in COVID-19 patients and therapeutic applications of antiviral plant MBLs. Mol. Cell. Biochem. 476(8), 2917–2942 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Barton, C., Kouokam, J.C., Hurst, H., Palmer, K.E.: Pharmacokinetics of the Antiviral Lectin Griffithsin Administered by Different Routes Indicates Multiple Potential Uses. Viruses 8(12), 331 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  132. Pengcheng, W., Bai, J., Liu, X., Wang, M., Wang, X., Jiang, P.: Tomatidine inhibits porcine epidemic diarrhea virus replication by targeting 3CL protease. Vet. Res. 51, 1–8 (2020)

    Google Scholar 

  133. Pritchard, L.K., Spencer, D.I., Royle, L., Bonomelli, C., Seabright, G.E., Behrens, A.J., Kulp, D.W., Menis, S., Krumm, S.A., Dunlop, D.C., Crispin, D.J.: Glycan clustering stabilizes the mannose patch of HIV-1 and preserves vulnerability to broadly neutralizing antibodies. Nat. Commun. 6(1), 1–1 (2015)

    Article  Google Scholar 

  134. Ward, A.B., Wilson, I.A.: Insights into the trimeric HIV-1 envelope glycoprotein structure. Trends Biochem. Sci. 40(2), 101–107 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Wang, W., Nie, J., Prochnow, C., Truong, C., Jia, Z., Wang, S., Chen, X.S., Wang, Y.: A systematic study of the N-glycosylation sites of HIV-1 envelope protein on infectivity and antibody-mediated neutralization. Retrovirol. 10(1), 1–4 (2013)

    Article  Google Scholar 

  136. Tilton, J.C., Doms, R.W.: Entry inhibitors in the treatment of HIV-1 infection. Antiviral Res. 85(1), 91–100 (2010)

    Article  CAS  PubMed  Google Scholar 

  137. Akkouh, O., Ng, T.B., Singh, S.S., Yin, C., Dan, X., Chan, Y.S., Pan, W., Cheung, R.C.: Lectins with anti-HIV activity: a review. Molecul. 20(1), 648–668 (2015)

    Article  Google Scholar 

  138. Checkley, M.A., Luttge, B.G., Freed, E.O.: HIV-1 envelope glycoprotein biosynthesis, trafficking, and incorporation. J. Mol. Biol. 410(4), 582–608 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Murugaiah, V., Yasmin, H., Pandit, H., Ganguly, K., Subedi, R., Al-Mozaini, M., Madan, T., Kishore, U.: Innate Immune Response Against HIV-1. Microb. Pathog. 23–58 (2021)

  140. Xiao, T., Cai, Y., Chen, B.: HIV-1 entry and membrane fusion inhibitors. Viruses 13(5), 735 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Blumenthal, R., Durell, S., Viard, M.: HIV entry and envelope glycoprotein-mediated fusion. J. Biol. Chem. 287(49), 40841–40849 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Wilen, C.B., Tilton, J.C., Doms, R.W.: HIV: cell binding and entry. Cold Spring Harb. Perspect. Med. 2(8), a006866 (2012)

    Article  PubMed  PubMed Central  Google Scholar 

  143. Mizuochi, T., Matthews, T.J., Kato, M., Hamako, J., Titani, K., Solomon, J., Feizi, T.: Diversity of oligosaccharide structures on the envelope glycoprotein gp 120 of human immunodeficiency virus 1 from the lymphoblastoid cell line H9. Presence of complex-type oligosaccharides with bisecting N-acetylglucosamine residues. J. Biol. Chem. 265(15), 8519–8524 (1990)

  144. Geyer, H., Holschbach, C., Hunsmann, G., Schneider, J.: Carbohydrates of human immunodeficiency virus. Structures of oligosaccharides linked to the envelope glycoprotein 120. J. Biol. Chem. 263(24), 11760–11767 (1998)

  145. Go, E.P., Hewawasam, G., Liao, H.X., Chen, H., Ping, L.H., Anderson, J.A., Hua, D.C., Haynes, B.F., Desaire, H.: Characterization of glycosylation profiles of HIV-1 transmitted/founder envelopes by mass spectrometry. J. Virol. 85(16), 8270–8284 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Go, E.P., Herschhorn, A., Gu, C., Castillo-Menendez, L., Zhang, S., Mao, Y., Chen, H., Ding, H., Wakefield, J.K., Hua, D., Liao, H.X.: Comparative analysis of the glycosylation profiles of membrane-anchored HIV-1 envelope glycoprotein trimers and soluble gp140. J. Virol. 89(16), 8245–8257 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Raska, M., Takahashi, K., Czernekova, L., Zachova, K., Hall, S., Moldoveanu, Z., Elliott, M.C., Wilson, L., Brown, R., Jancova, D., Barnes, S.: Glycosylation patterns of HIV-1 gp120 depend on the type of expressing cells and affect antibody recognition. J. Biol. Chem. 285(27), 20860–20869 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Zhu, X., Borchers, C., Bienstock, R.J., Tomer, K.B.: Mass spectrometric characterization of the glycosylation pattern of HIV-gp120 expressed in CHO cells. Biochem. 39(37), 11194–11204 (2000)

    Article  CAS  Google Scholar 

  149. Behrens, A.J., Harvey, D.J., Milne, E., Cupo, A., Kumar, A., Zitzmann, N., Struwe, W.B., Moore, J.P., Crispin, M.: Molecular architecture of the cleavage-dependent mannose patch on a soluble HIV-1 envelope glycoprotein trimer. J. Virol. 91(2), e01894-e1916 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Sok, D., Doores, K.J., Briney, B., Le, K.M., Saye-Francisco, K.L., Ramos, A., Kulp, D.W., Julien, J.P., Menis, S., Wickramasinghe, L., Seaman, M.S.: Promiscuous glycan site recognition by antibodies to the high-mannose patch of gp120 broadens neutralization of HIV. Sci. Transl. Med. 6(236), 236ra63 (2014)

  151. Coss, K.P., Vasiljevic, S., Pritchard, L.K., Krumm, S.A., Glaze, M., Madzorera, S., Moore, P.L., Crispin, M., Doores, K.J.: HIV-1 glycan density drives the persistence of the mannose patch within an infected individual. J. Virol. 90(24), 11132–11144 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Wang, L.X., Song, H., Liu, S., Lu, H., Jiang, S., Ni, J., Li, H.: Chemoenzymatic synthesis of HIV-1 gp41 glycopeptides: effects of glycosylation on the anti-HIV activity and α-helix bundle-forming ability of peptide C34. ChemBioChem 6(6), 1068–1074 (2005)

    Article  CAS  PubMed  Google Scholar 

  153. Ji, X., Chen, Y., Faro, J., Gewurz, H., Bremer, J., T Spear G.: Interaction of human immunodeficiency virus (HIV) glycans with lectins of the human immune system. Curr. Protein Pept. Sci. 7(4), 317–324 (2006)

  154. Svarovsky, S.A., Joshi, L.: Biocombinatorial selection of carbohydrate binding agents of therapeutic significance. Curr. Drug Discov. Technol. 5(1), 20–28 (2008)

    Article  CAS  PubMed  Google Scholar 

  155. Jahan, R., Ahmed, M.N., Nissapatorn, V., Wilairatana, P., Rahmatullah, M.: Plant lectins as prospective antiviral biomolecules in the search for COVID-19 eradication strategies. Biomed. Pharmacother. 146, 112507 (2022)

    Article  PubMed  Google Scholar 

  156. Peng, H., Lv, H., Wang, Y., Liu, Y.H., Li, C.Y., Meng, L., Chen, F., Bao, J.K.: Clematis montana lectin, a novel mannose-binding lectin from traditional Chinese medicine with antiviral and apoptosis-inducing activities. Peptides 30(10), 1805–1815 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Van Damme, E.J., Rougé, P.: Lectins from plants, algae, fungi, bacteria and animal therapeutic tools for SARS-CoV-2 and other pathogenic enveloped viruses, in a “one-health” perspective. Front. Cell. Infect. Microbiol. 13, 49 (2023)

    Google Scholar 

  158. Jaakkonen, A., Volkmann, G., Iwaï, H.: An off-the-shelf approach for the production of fc fusion proteins by protein trans-splicing towards generating a lectibody In Vitro. Int. J. Mol. Sci. 21(11), 4011 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Boyd, M.R., Gustafson, K.R., McMahon, J.B., Shoemaker, R.H., O’Keefe, B.R., Mori, T., Gulakowski, R.J., Wu, L., Rivera, M.I., Laurencot, C.M., Currens, M.J.: Discovery of cyanovirin-N, a novel human immunodeficiency virus-inactivating protein that binds viral surface envelope glycoprotein gp120: potential applications to microbicide development. Antimicrob. Agents Chemother. 1521, 30 (1997)

  160. Bolmstedt, A.J., O’Keefe, B.R., Shenoy, S.R., McMahon, J.B., Boyd, M.R.: Cyanovirin-N defines a new class of antiviral agent targeting N-linked, high-mannose glycans in an oligosaccharide-specific manner. Mol. Pharmacol. 59(5), 949–954 (2001)

  161. Barrientos, L.G., Gronenborn, A.M.: The highly specific carbohydrate-binding protein cyanovirin-N: structure, anti-HIV/Ebola activity and possibilities for therapy. Mini-Rev. Med. Chem. 5(1), 21–31 (2005)

    Article  CAS  PubMed  Google Scholar 

  162. Bewley, C.A., Otero-Quintero, S.: The potent anti-HIV protein cyanovirin-N contains two novel carbohydrate binding sites that selectively bind to Man8 D1D3 and Man9 with nanomolar affinity: implications for binding to the HIV envelope protein gp120. J. Am. Chem. Soc. 123(17), 3892–3902 (2001)

    Article  CAS  PubMed  Google Scholar 

  163. Liu, Y., Carroll, J.R., Holt, L.A., McMahon, J., Giomarelli, B., Ghirlanda, G.: Multivalent interactions with gp120 are required for the anti-HIV activity of Cyanovirin. Peptide Sci. 92(3), 194–200 (2009)

    Article  CAS  Google Scholar 

  164. Nickoloff-Bybel, E.A., Festa, L., Meucci, O., Gaskill, P.J.: Co-receptor signaling in the pathogenesis of neuroHIV. Retrovirology 18(1), 24 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Keeffe, J.R., Gnanapragasam, P.N., Gillespie, S.K., Yong, J., Bjorkman, P.J., Mayo, S.L.: Designed oligomers of cyanovirin-N show enhanced HIV neutralization. Proc. Natl. Acad. Sci. 108(34), 14079–14084 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Balzarini, J., Van Laethem, K., Peumans, W.J., Van Damme, E.J., Bolmstedt, A., Gago, F., Schols, D.: Mutational pathways, resistance profile, and side effects of cyanovirin relative to human immunodeficiency virus type 1 strains with N-glycan deletions in their gp120 envelopes. J. Virol. 80(17), 8411–8421 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Tsai, C.C., Emau, P., Jiang, Y., Tian, B., Morton, W.R., Gustafson, K.R., Boyd, M.R.: Cyanovirin-N gel as a topical microbicide prevents rectal transmission of SHIV89. 6P in macaques. AIDS Res. Hum. Retroviruses. 19(7), 535–541 (2003)

  168. Dey, B., Lerner, D.L., Lusso, P., Boyd, M.R., Elder, J.H., Berger, E.A.: Multiple antiviral activities of cyanovirin-N: blocking of human immunodeficiency virus type 1 gp120 interaction with CD4 and coreceptor and inhibition of diverse enveloped viruses. J. Virol. 74(10), 4562–4569 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Barrientos, L.G., O’Keefe, B.R., Bray, M., Sanchez, A., Gronenborn, A.M., Boyd, M.R.: Cyanovirin-N binds to the viral surface glycoprotein, GP1, 2 and inhibits infectivity of Ebola virus. Antiviral Res. 58(1), 47–56 (2003)

    Article  CAS  PubMed  Google Scholar 

  170. Helle, F., Wychowski, C., Vu-Dac, N., Gustafson, K.R., Voisset, C., Dubuisson, J.: Cyanovirin-N inhibits hepatitis C virus entry by binding to envelope protein glycans. J. Biol. Chem. 281(35), 25177–25183 (2006)

    Article  CAS  PubMed  Google Scholar 

  171. O’Keefe, B.R., Smee, D.F., Turpin, J.A., Saucedo, C.J., Gustafson, K.R., Mori, T., Blakeslee, D., Buckheit, R., Boyd, M.R.: Potent anti-influenza activity of cyanovirin-N and interactions with viral hemagglutinin. Antimicrob. Agents Chemother. 47(8), 2518–2525 (2003)

  172. Wang, W., Cole, A.M., Hong, T., Waring, A.J., Lehrer, R.I.: Retrocyclin, an antiretroviral θ-defensin, is a lectin. J. Immunol. Res. 170(9), 4708–4716 (2003)

    CAS  Google Scholar 

  173. Bewley, C.A., Gustafson, K.R., Boyd, M.R., Covell, D.G., Bax, A., Clore, G.M., Gronenborn, A.M.: Solution structure of cyanovirin-N, a potent HIV-inactivating protein. Nat. Struct. Biol. 5(7), 571–578 (1998)

    Article  CAS  PubMed  Google Scholar 

  174. Zweckstetter, M., Bax, A.: Prediction of sterically induced alignment in a dilute liquid crystalline phase: aid to protein structure determination by NMR. J.Am. Chem. Soc. 122(15), 3791–3792 (2000)

  175. Vamvaka, E., Evans, A., Ramessar, K., Krumpe, L.R., Shattock, R.J., O’Keefe, B.R., Christou, P., Capell, T.: Cyanovirin-N produced in rice endosperm offers effective pre-exposure prophylaxis against HIV-1BaL infection in vitro. Plant Cell Rep. 35(6), 1309–1319 (2016)

  176. Fischetti, L., Barry, S.M., Hope, T.J., Shattock, R.J.: HIV-1 infection of human penile explant tissue and protection by candidate microbicides. AIDS (London, England). 23(3), 319 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Kehr, J.C., Zilliges, Y., Springer, A., Disney, M.D., Ratner, D.D., Bouchier, C., Seeberger, P.H., De Marsac, N.T., Dittmann, E.: A mannan binding lectin is involved in cell–cell attachment in a toxic strain of Microcystis aeruginosa. Mol. Microbiol. 59(3), 893–906 (2006)

    Article  CAS  PubMed  Google Scholar 

  178. Shahzad-ul-Hussan, S., Gustchina, E., Ghirlando, R., Clore, G.M., Bewley, C.A.: Solution structure of the monovalent lectin microvirin in complex with Manα (1–2) Man provides a basis for anti-HIV activity with low toxicity. J. Biol. Chem. 286(23), 20788–20796 (2000)

    Article  Google Scholar 

  179. Williams, D.C., Lee, J.Y., Cai, M., Bewley, C.A., Clore, G.M.: Crystal structures of the HIV-1 inhibitory cyanobacterial protein MVL free and bound to Man3GlcNAc2: structural basis for specificity and high-affinity binding to the core pentasaccharide from n-linked oligomannoside. J. Biol. Chem. 280(32), 29269–29276 (2005)

    Article  CAS  PubMed  Google Scholar 

  180. Bewley, C.A., Cai, M., Ray, S., Ghirlando, R., Yamaguchi, M., Muramoto, K.: New carbohydrate specificity and HIV-1 fusion blocking activity of the cyanobacterial protein MVL: NMR, ITC and sedimentation equilibrium studies. J. Mol. Biol. 339(4), 901–914 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Huskens, D., Férir, G., Vermeire, K., Kehr, J.C., Balzarini, J., Dittmann, E., Schols, D.: Microvirin, a novel alpha(1,2)-mannose-specific lectin isolated from Microcystis aeruginosa, has anti-HIV-1 activity comparable with that of cyanovirin-N but a much higher safety profile. J. Biol. Chem. 285(32), 24845–24854 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Siqueira, A.S., Lima, A.R., de Souza, R.C., Santos, A.S., Vianez Júnior, J.L., Gonçalves, E.C.: In silico analysis of the cyanobacterial lectin scytovirin: new insights into binding properties. Mol. Biol. Rep. 44(4), 353–358 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Xiong, C., O’Keefe, B.R., Botos, I., Wlodawer, A., McMahon, J.B.: Overexpression and purification of scytovirin, a potent, novel anti-HIV protein from the cultured cyanobacterium Scytonema varium. Protein Expr. Purif. 46(2), 233–239 (2006)

    Article  CAS  PubMed  Google Scholar 

  184. Covés-Datson, E.M., King, S.R., Legendre, M., Swanson, M.D., Gupta, A., Claes, S., Meagher, J.L., Boonen, A., Zhang, L., Kalveram, B., Raglow, Z.: Targeted disruption of pi–pi stacking in Malaysian banana lectin reduces mitogenicity while preserving antiviral activity. Sci. Rep. 11(1), 656 (2021)

    Article  PubMed  PubMed Central  Google Scholar 

  185. Hopper, J.T., Ambrose, S., Grant, O.C., Krumm, S.A., Allison, T.M., Degiacomi, M.T., Tully, M.D., Pritchard, L.K., Ozorowski, G., Ward, A.B., Crispin, M.: The tetrameric plant lectin BanLec neutralizes HIV through bidentate binding to specific viral glycans. Structure. 25(5), 773–782 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Singh, S.S., Devi, S.K., Ng, T.B.: Banana lectin: a brief review. Molecules 19(11), 18817–18827 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  187. Mordi, R.C., Fadiaro, A.E., Owoeye, T.F., Olanrewaju, I.O., Uzoamaka, G.C., Olorunshola, S.J.: Identification by GC-MS of the components of oils of banana peels extract, phytochemical and antimicrobial analyses. Res. J. Phytochem. 10(1), 39–44 (2016)

    Article  CAS  Google Scholar 

  188. Meagher, J.L., Winter, H.C., Ezell, P., Goldstein, I.J., Stuckey, J.A.: Crystal structure of banana lectin reveals a novel second sugar binding site. Glycobiology 15(10), 1033–1042 (2005)

    Article  CAS  PubMed  Google Scholar 

  189. Swanson, M.D., Boudreaux, D.M., Salmon, L., Chugh, J., Winter, H.C., Meagher, J.L., Andre, S., Murphy, P.V., Oscarson, S., Roy, R., King, S.: Engineering a therapeutic lectin by uncoupling mitogenicity from antiviral activity. Cell 163(3), 746–758 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Lopandić, Z., Dragačević, L., Popović, D., Andjelković, U., Minić, R., Gavrović-Jankulović, M.: BanLec-eGFP chimera as a tool for evaluation of lectin binding to high-mannose glycans on microorganisms. Biomolecules 11(2), 180 (2021)

    Article  PubMed  PubMed Central  Google Scholar 

  191. Subramaniam, G., Batcha, A.T., Wadhwani, A.: In vitro antiviral activity of BanLec against herpes simplex viruses type 1 and 2. Bangladesh J. Pharmacol. 15(1), 11–18 (2020)

    Article  Google Scholar 

  192. Chan, J.F., Oh, Y.J., Yuan, S., Chu, H., Yeung, M.L., Canena, D., Chan, C.C., Poon, V.K., Chan, C.C., Zhang, A.J., Cai, J.P.: A molecularly engineered, broad-spectrum anti-coronavirus lectin inhibits SARS-CoV-2 and MERS-CoV infection in vivo. Cell Rep. 3(10), 100774 (2022)

    CAS  Google Scholar 

  193. Ziółkowska, N.E., Shenoy, S.R., O'Keefe, B.R., McMahon, J.B., Palmer, K.E., Dwek, R.A., Wormald, M.R., Wlodawer, A.: Crystallographic, thermodynamic, and molecular modeling studies of the mode of binding of oligosaccharides to the potent antiviral protein griffithsin. Proteins: Struct. Funct. 67(3), 661–670 (2007)

  194. Derby, N., Lal, M., Aravantinou, M., Kizima, L., Barnable, P., Rodriguez, A., Lai, M., Wesenberg, A., Ugaonkar, S., Levendosky, K., Mizenina, O.: Griffithsin carrageenan fast dissolving inserts prevent SHIV HSV-2 and HPV infections in vivo. Nat. Commun. 9(1), 3881(2018)

  195. Lusvarghi, S., Bewley, C.A.: Griffithsin: an antiviral lectin with outstanding therapeutic potential. Viruses 8(10), 296 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  196. Alam, A., Jiang, L., Kittleson, G.A., Steadman, K.D., Nandi, S., Fuqua, J.L., Palmer, K.E., Tusé, D., McDonald, K.A.: Technoeconomic modeling of plant-based griffithsin manufacturing. Front. Bioeng. Biotechnol. 6, 102 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  197. Millet, J.K., Séron, K., Labitt, R.N., Danneels, A., Palmer, K.E., Whittaker, G.R., Dubuisson, J., Belouzard, S.: Middle East respiratory syndrome coronavirus infection is inhibited by griffithsin. Antiviral Res. 133, 1–8 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Hoelscher, M., Tiller, N., Teh, A.Y., Wu, G.Z., Ma, J.K., Bock, R.: High-level expression of the HIV entry inhibitor griffithsin from the plastid genome and retention of biological activity in dried tobacco leaves. Plant Mol. Biol. 97, 357–370 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Li, L., Yu, X., Zhang, H., Cheng, H., Hou, L., Zheng, Q., Hou, J.: In vitro antiviral activity of Griffithsin against porcine epidemic diarrhea virus. Virus Genes 55, 174–181 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Mori, T., O’Keefe, B.R., Sowder, R.C., Bringans, S., Gardella, R., Berg, S., Cochran, P., Turpin, J.A., Buckheit, R.W., McMahon, J.B., Boyd, M.R.: Isolation and characterization of griffithsin, a novel HIV-inactivating protein, from the red alga Griffithsia sp. J. Biol. Chem. 280(10), 9345–9353 (2005)

  201. O’Keefe, B.R., Vojdani, F., Buffa, V., Shattock, R.J., Montefiori, D.C., Bakke, J., Mirsalis, J., d’Andrea, A.L., Hume, S.D., Bratcher, B., Saucedo, C.J.: Scaleable manufacture of HIV-1 entry inhibitor griffithsin and validation of its safety and efficacy as a topical microbicide component. Proc. Natl. Acad. Sci. 106(15), 6099–6104 (2009)

  202. Barton, C., Kouokam, J.C., Lasnik, A.B., Foreman, O., Cambon, A., Brock, G., Montefiori, D.C., Vojdani, F., McCormick, A.A., O’Keefe, B.R., Palmer, K.E.: Activity of and effect of subcutaneous treatment with the broad-spectrum antiviral lectin griffithsin in two laboratory rodent models. Antimicrob. Agents Chemother. 58(1), 120–127 (2014)

  203. Hoorelbeke, B., Huskens, D., Férir, G., François, K.O., Takahashi, A., Van Laethem, K., Schols, D., Tanaka, H., Balzarini, J.: Actinohivin, a broadly neutralizing prokaryotic lectin, inhibits HIV-1 infection by specifically targeting high-mannose-type glycans on the gp120 envelope. Antimicrob. Agents Chemother. 54(8), 3287–3301 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Koharudin, L.M., Furey, W., Gronenborn, A.M.: Novel fold and carbohydrate specificity of the potent anti-HIV cyanobacterial lectin from Oscillatoria agardhii. J. Biol. Chem. 286(2), 1588–1597 (2011)

    Article  CAS  PubMed  Google Scholar 

  205. Whitley, M.J., Furey, W., Kollipara, S., Gronenborn, A.M.: B urkholderia oklahomensis agglutinin is a canonical two-domain OAA-family lectin: structures, carbohydrate binding and anti-HIV activity. FEBS J. 280(9), 2056–2067 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Férir, G., Huskens, D., Noppen, S., Koharudin, L.M., Gronenborn, A.M., Schols, D.: Broad anti-HIV activity of the Oscillatoria agardhii agglutinin homologue lectin family. J. Antimicrob. Chemother. 69(10), 2746–2758 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  207. McFeeters, H., Gilbert, M.J., Wood, A.M., Haggenmaker, C.B., Jones, J., Kutsch, O., McFeeters, R.L.: Scytovirin engineering improves carbohydrate affinity and HIV-1 entry inhibition. Biochem. Physiol. S. 2(2) (2013)

  208. López, S., Armand-Ugon, M., Bastida, J., Viladomat, F., Esté, J.A., Stewart, D., Codina, C.: Anti-human immunodeficiency virus type 1 (HIV-1) activity of lectins from Narcissus species. Planta Med. 69(2), 109–112 (2003)

    Article  PubMed  Google Scholar 

  209. Swanson, M.D., Winter, H.C., Goldstein, I.J., Markovitz, D.M.: A lectin isolated from bananas is a potent inhibitor of HIV replication. J. Biol. Chem. 285(12), 8646–8655 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Balzarini, J., Neyts, J., Schols, D., Hosoya, M., Van Damme, E., Peumans, W., De Clercq, E.: The mannose-specific plant lectins from Cymbidium hybrid and Epipactis helleborine and the (N-acetylglucosamine)n-specific plant lectin from Urtica dioica are potent and selective inhibitors of human immunodeficiency virus and cytomegalovirus replication in vitro. Antiviral Res. 18(2), 191–207 (1992)

    Article  CAS  PubMed  Google Scholar 

  211. Teixeira, C.S., Assreuy, A.M., da Silva Osterne, V.J., Amorim, R.M., Brizeno, L.A., Debray, H., Nagano, C.S., Delatorre, P., Sampaio, A.H., Rocha, B.A., Cavada, B.S.: Mannose-specific legume lectin from the seeds of Dolichos lablab (FRIL) stimulates inflammatory and hypernociceptive processes in mice. Process Biochem. 49(3), 529–534 (2014)

    Article  CAS  Google Scholar 

  212. Jayaprakash, N.G., Singh, A., Vivek, R., Yadav, S., Pathak, S., Trivedi, J., Jayaraman, N., Nandi, D., Mitra, D., Surolia, A.: Correction: The barley lectin, horcolin, binds high-mannose glycans in a multivalent fashion, enabling high-affinity, specific inhibition of cellular HIV infection. J. Biol. Chem. 297(3) (2021)

  213. Gondim, A.C., da Silva, S.R., Mathys, L., Noppen, S., Liekens, S., Sampaio, A.H., Nagano, C.S., Rocha, C.R., Nascimento, K.S., Cavada, B.S., Sadler, P.J.: Potent antiviral activity of carbohydrate-specific algal and leguminous lectins from the Brazilian biodiversity. Med. Chem. Comm. 10(3), 390–398 (2019)

    Article  CAS  Google Scholar 

  214. Ghany, M.G., Strader, D.B., Thomas, D.L., Seeff, L.B.: American Association for the Study of Liver Diseases. Diagnosis, management, and treatment of hepatitis C: an update. Hepatology. 49(4), 1335–1374(2009)

  215. Moustafa, R.I., Dubuisson, J., Lavie, M.: Function of the HCV E1 envelope glycoprotein in viral entry and assembly. Future Virol. 171–184 (2019)

  216. Lavie, M., Hanoulle, X., Dubuisson, J.: Glycan shielding and modulation of hepatitis C virus neutralizing antibodies. Front. Immunol. 9, 910 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  217. Helle, F., Duverlie, G., Dubuisson, J.: The hepatitis C virus glycan shield and evasion of the humoral immune response. Viruses 3(10), 1909–1932 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Shahid, M., Qadir, A., Yang, J., Ahmad, I., Zahid, H., Mirza, S., Windisch, M.P., Shahzad-ul-Hussan, S.: An engineered microvirin variant with identical structural domains potently inhibits human immunodeficiency virus and hepatitis C virus cellular entry. Viruses 12(2), 199 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Meuleman, P., Albecka, A., Belouzard, S., Vercauteren, K., Verhoye, L., Wychowski, C., Leroux-Roels, G., Palmer, K.E., Dubuisson, J.: Griffithsin has antiviral activity against hepatitis C virus. Antimicrob. Agents Chemother. 55(11), 5159–5167 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Loimaranta, V., Hepojoki, J., Laaksoaho, O., Pulliainen, A.T.: Galectin-3-binding protein: A multitask glycoprotein with innate immunity functions in viral and bacterial infections. J. Leukoc. Biol. 104(4), 777–786 (2018)

    Article  CAS  PubMed  Google Scholar 

  221. Ouchida, T., Maeda, H., Akamatsu, Y., Maeda, M., Takamatsu, S., Kondo, J., Misaki, R., Kamada, Y., Ueda, M., Ueda, K., Miyoshi, E.: Pholiota squarrosa lectin (PhoSL), a lectin binding to core-fucose specifically, inhibits HBV infection. Res Sq. (2022)

  222. Bertaux, C., Daelemans, D., Meertens, L., Cormier, E.G., Reinus, J.F., Peumans, W.J., Van Damme, E.J., Igarashi, Y., Oki, T., Schols, D., Dragic, T.: Entry of hepatitis C virus and human immunodeficiency virus is selectively inhibited by carbohydrate-binding agents but not by polyanions. Virology 366(1), 40–50 (2007)

    Article  CAS  PubMed  Google Scholar 

  223. Jensen, S.M., Ruscetti, F.W., Rein, A., Bertolette, D.C., Saucedo, C.J., O’Keefe, B.R., Jones, K.S.: Differential inhibitory effects of cyanovirin-N, griffithsin, and scytovirin on entry mediated by envelopes of gammaretroviruses and deltaretroviruses. J. Virol. 88(4), 2327–2332 (2014)

  224. Ko, S.M., Kwon, J., Vaidya, B., Choi, J.S., Lee, H.M., Oh, M.J., Bae, H.J., Cho, S.Y., Oh, K.S., Kim, D.: Development of lectin-linked immunomagnetic separation for the detection of hepatitis A virus. Viruses 6(3), 1037–1048 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  225. Taghizadeh, S.F., Azizi, M., Asili, J., Madarshahi, F.S., Rakhshandeh, H., Fujii, Y.: Therapeutic peptides of Mucuna pruriens L.: Anti‐genotoxic molecules against human hepatocellular carcinoma and hepatitis C virus. Food Sci. Nutr. 9(6), 2908–14 (2021)

  226. Al-Sohaimy, S.A., Hafez, E.E., Abdelwahab, A.E., El-Saadani, M.A.: Anti-HCV lectin from Egyptian Pisum sativum. Aust. J. Basic Appl. Sci. 1(3), 213–219 (2007)

    CAS  Google Scholar 

  227. Palese, P.: Orthomyxoviridae: the viruses and their replication. Fields virology. 1647–89 (2007)

  228. Ran, Z., Shen, H., Lang, Y., Kolb, E.A., Turan, N., Zhu, L., Ma, J., Bawa, B., Liu, Q., Liu, H., Quast, M.: Domestic pigs are susceptible to infection with influenza B viruses. J. Virol. 89(9), 4818–4826 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Nickol, M.E., Kindrachuk, J.: A year of terror and a century of reflection: perspectives on the great influenza pandemic of 1918–1919. BMC Infect. Dis. 19(1), 1 (2019)

    Article  Google Scholar 

  230. Morimoto, K., Sato, Y.: Anti-influenza virus activity of high-mannose binding lectins derived from genus Pseudomonas. Virus Res. 223, 64–72 (2016)

    Article  CAS  PubMed  Google Scholar 

  231. Wu, N.C., Young, A.P., Al-Mawsawi, L.Q., Olson, C.A., Feng, J., Qi, H., Chen, S.H., Lu, I., Lin, C.Y., Chin, R.G., Luan, H.H.: High-throughput profiling of influenza A virus hemagglutinin gene at single-nucleotide resolution. Sci. Rep. 4(1), 1–8 (2014)

    CAS  Google Scholar 

  232. Wu, C.Y., Lin, C.W., Tsai, T.I., Lee, C.C., Chuang, H.Y., Chen, J.B., Tsai, M.H., Chen, B.R., Lo, P.W., Liu, C.P., Shivatare, V.S.: Influenza A surface glycosylation and vaccine design. Proc. Natl. Acad. Sci. U S A. 114(2), 280–5 (2017)

  233. Covés-Datson, E.M., King, S.R., Legendre, M., Gupta, A., Chan, S.M., Gitlin, E., Kulkarni, V.V., Pantaleón García, J., Smee, D.F., Lipka, E., Evans, S.E., Tarbet, E.B., Ono, A., Markovitz, D.M.: A molecularly engineered antiviral banana lectin inhibits fusion and is efficacious against influenza virus infection in vivo. Proc Natl Acad Sci U S A. 117(4), 2122–2132 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  234. Gordts, S.C., Renders, M., Férir, G., Huskens, D., Van Damme, E.J., Peumans, W., Balzarini, J., Schols, D.: NICTABA and UDA, two GlcNAc-binding lectins with unique antiviral activity profiles. J. Antimicrob. Chemother. 70(6), 1674–1685 (2015)

    Article  CAS  PubMed  Google Scholar 

  235. Ooi, L.S., Ng, T.B., Geng, Y., Ooi, V.E.: Lectins from bulbs of the Chinese daffodil Narcissus tazetta (family Amaryllidaceae). Biochem. Cell Biol. 78(4), 463–468 (2000)

    Article  CAS  PubMed  Google Scholar 

  236. Ooi, L.S., Sun, S.S., Ng, T.B., Ooi, V.E.: Molecular cloning and the cDNA-derived amino acid sequence of Narcissus tazetta isolectins. J. Protein Chem. 20(4), 305–310 (2001)

    Article  CAS  PubMed  Google Scholar 

  237. Sato, Y., Morimoto, K., Kubo, T., Sakaguchi, T., Nishizono, A., Hirayama, M., Hori, K.: Entry inhibition of influenza viruses with high mannose binding lectin ESA-2 from the red alga Eucheuma serra through the recognition of viral hemagglutinin. Mar. Drugs 13(6), 3454–3465 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Sato, Y., Morimoto, K., Hirayama, M., Hori, K.: High mannose-specific lectin (KAA-2) from the red alga Kappaphycus alvarezii potently inhibits influenza virus infection in a strain-independent manner. Biochem. Biophys. Res. Commun. 405(2), 291–296 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Vanderlinden, E., Van Winkel, N., Naesens, L., Van Damme, E.J., Persoons, L., Schols, D.: In vitro characterization of the carbohydrate-binding agents HHA, GNA, and UDA as inhibitors of influenza A and B virus replication. Antimicrob. Agents Chemother. 65(3), e01732-e1820 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Ooi, L.S., Sun, S.S., Ooi, V.E.: Purification and characterization of a new antiviral protein from the leaves of Pandanus amaryllifolius (Pandanaceae). Int. J. Biochem. Cell Biol. 36(8), 1440–1446 (2004)

    Article  CAS  PubMed  Google Scholar 

  241. Liu, Y.M., Shahed-Al-Mahmud, M., Chen, X., Chen, T.H., Liao, K.S., Lo, J.M., Wu, Y.M., Ho, M.C., Wu, C.Y., Wong, C.H., Jan, J.T.: A carbohydrate-binding protein from the edible lablab beans effectively blocks the infections of influenza viruses and SARS-CoV-2. Cell Rep. 32(6), 108016 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Kleinschmidt‐DeMasters, B.K., Keohane, C., Gray, F.: Herpes simplex virus infections of the CNS. Infections of the Central Nervous System: Pathology and Genetics. 43–54 (2020)

  243. Lim, T.K.: Edible medicinal and non-medicinal plants. Dordrecht, The Netherlands: Springer. 1, 656–687 (2012)

    Google Scholar 

  244. Luo, Y., Xu, X., Liu, J., Li, J., Sun, Y., Liu, Z., Liu, J., Van Damme, E., Balzarini, J., Bao, J.: A novel mannose-binding tuber lectin from Typhonium divaricatum (L.) Decne (family Araceae) with antiviral activity against HSV-II and anti-proliferative effect on human cancer cell lines. J Biochem Mol Biol. 40(3), 358–67 (2007)

  245. Tiwari, V., Shukla, S.Y., Shukla, D.: A sugar binding protein cyanovirin-N blocks herpes simplex virus type-1 entry and cell fusion. Antiviral Res. 84(1), 67–75 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Nixon, B., Stefanidou, M., Mesquita, P.M., Fakioglu, E., Segarra, T., Rohan, L., Halford, W., Palmer, K.E., Herold, B.C.: Griffithsin protects mice from genital herpes by preventing cell-to-cell spread. Virol. J. 87(11), 6257–6269 (2013)

    Article  CAS  Google Scholar 

  247. Yang, Y., Xu, H.L., Zhang, Z.T., Liu, J.J., Li, W.W., Ming, H., Bao, J.K.: Characterization, molecular cloning, and in silico analysis of a novel mannose-binding lectin from Polygonatum odoratum (Mill.) with anti-HSV-II and apoptosis-inducing activities. Phytomedicine. 18(8–9), 748–55 (2011)

  248. Marchetti, M., Mastromarino, P., Rieti, S., Seganti, L., Orsi, N.: Inhibition of herpes simplex, rabies and rubella viruses by lectins with different specificities. Res. Virol. 146(3), 211–215 (1995)

    Article  CAS  PubMed  Google Scholar 

  249. Gatherer, D.: The 2014 Ebola virus disease outbreak in West Africa. J. Gen. Virol. 95(8), 1619–1624 (2014)

    Article  CAS  PubMed  Google Scholar 

  250. Briand, S., Bertherat, E., Cox, P., Formenty, P., Kieny, M.P.: The international Ebola emergency. N. Engl. J. 371(13), 1180–1183 (2014)

    Article  Google Scholar 

  251. Negredo, A., Palacios, G., Vázquez-Morón, S., González, F., Dopazo, H., Molero, F., Juste, J., Quetglas, J., Savji, N., de la Cruz, M.M., Herrera, J.E.: Discovery of an ebolavirus-like filovirus in europe. PLoS Pathog. 7(10), e1002304 (2001)

    Article  Google Scholar 

  252. Vogel, G.: Infectious disease. Are bats spreading Ebola across sub-Saharan Africa? Science. 344(6180), 140 (2014)

  253. Paessler, S., Walker, D.H.: Pathogenesis of the viral hemorrhagic fevers. Annu. Rev. Pathol. 8(1), 411 (2013)

    Article  CAS  PubMed  Google Scholar 

  254. Maier, I., Schiestl, R.H., Kontaxis, G.: Cyanovirin-N binds viral envelope proteins at the low-affinity carbohydrate binding site without direct virus neutralization ability. Molecules. 26(12), 3621(2021)

  255. Brudner, M., Karpel, M., Lear, C., Chen, L., Yantosca, L.M., Scully, C., Sarraju, A., Sokolovska, A., Zariffard, M.R., Eisen, D.P., Mungall, B.A.: Lectin-dependent enhancement of Ebola virus infection via soluble and transmembrane C-type lectin receptors. PLoS ONE 8(4), e60838 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Guo, Y.R., Cao, Q.D., Hong, Z.S., Tan, Y.Y., Chen, S.D., Jin, H.J., Tan, K.S., Wang, D.Y., Yan, Y.: The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak–an update on the status. Mil. Med. Res. 1, 1 (2020)

    Google Scholar 

  257. Baud, D., Qi, X., Nielsen-saines, K., Musso, D., Pomar, L., Favre, G.: Real estimates of mortality following COVID-19 infection. Lancet Infect. Dis. (2020)

  258. El Zowalaty, M.E., Järhult, J.D.: From SARS to COVID-19: A previously unknown SARS-related coronavirus (SARS-CoV-2) of pandemic potential infecting humans–Call for a One Health approach. One Health. 9, 100124 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  259. Shereen, M.A., Khan, S., Kazmi, A., Bashir, N., Siddique, R.: COVID-19 infection: Emergence, transmission, and characteristics of human coronaviruses. J. Adv. Res. 24, 91–98 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Banerjee, A., Kulcsar, K., Misra, V., Frieman, M., Mossman, K.: Bats and coronaviruses. Viruses. 11(1), 41 (2019)

    PubMed  Google Scholar 

  261. Lu, R., Zhao, X., Li, J., Niu, P., Yang, B., Wu, H., Wang, W., Song, H., Huang, B., Zhu, N., Bi, Y.: Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. The lancet. 395(10224), 565–574 (2020)

    Article  CAS  Google Scholar 

  262. Kumaki, Y., Wandersee, M.K., Smith, A.J., Zhou, Y., Simmons, G., Nelson, N.M., Bailey, K.W., Vest, Z.G., Li, J.K., Chan, P.K., Smee, D.F.: Inhibition of severe acute respiratory syndrome coronavirus replication in a lethal SARS-CoV BALB/c mouse model by stinging nettle lectin. Urtica dioica agglutinin. Antiviral Res. 90(1), 22–32 (2011)

    Article  CAS  PubMed  Google Scholar 

  263. Koch, B., Schult-Dietrich, P., Büttner, S., Dilmaghani, B., Lohmann, D., Baer, P.C., Dietrich, U., Geiger, H.: Lectin affinity plasmapheresis for middle east respiratory syndrome-coronavirus and Marburg virus glycoprotein elimination. Blood Purif. 46(2), 126–133 (2018)

    Article  CAS  PubMed  Google Scholar 

  264. Tripathi, N., Goel, B., Bhardwaj, N., Vishwakarma, R.A., Jain, S.K.: Exploring the potential of chemical inhibitors for targeting post-translational glycosylation of coronavirus (SARS-CoV-2). ACS Omega 7(31), 27038–27051 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Sharifkashani, S., Bafrani, M.A., Khaboushan, A.S., Pirzadeh, M., Kheirandish, A., Yavarpour Bali, H., Hessami, A., Saghazadeh, A., Rezaei, N.: Angiotensin-converting enzyme 2 (ACE2) receptor and SARS-CoV-2: potential therapeutic targeting. Eur. J. Pharmacol. 884, 173455 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Wu, F., Zhao, S., Yu, B., Chen, Y.M., Wang, W., Song, Z.G., Hu, Y., Tao, Z.W., Tian, J.H., Pei, Y.Y., Yuan, M.L.: A new coronavirus associated with human respiratory disease in China. Nature 579(7798), 265–269 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Ritchie, G., Harvey, D.J., Feldmann, F., Stroeher, U., Feldmann, H., Royle, L., Dwek, R.A., Rudd, P.M.: Identification of N-linked carbohydrates from severe acute respiratory syndrome (SARS) spike glycoprotein. Virology 399(2), 257–269 (2010)

    Article  CAS  PubMed  Google Scholar 

  268. Barre, A., Damme, E.J., Simplicien, M., Benoist, H., Rougé, P.: Man-specific, GalNAc/T/Tn-specific and Neu5Ac-specific seaweed lectins as glycan probes for the SARS-CoV-2 (COVID-19) coronavirus. Marine drugs. 18(11), 543(2020)

  269. Fouad, A.K.: Lectin therapy: A way to explore in order to inhibit the binding of COVID-19 to these host cells. Int J Innov Sci Res Technol. 5, 1280–1286 (2020)

    Google Scholar 

  270. Harvey, W.T., Carabelli, A.M., Jackson, B., Gupta, R.K., Thomson, E.C., Harrison, E.M., Ludden, C., Reeve, R., Rambaut, A., Peacock, S.J., Robertson, D.L.: SARS-CoV-2 variants, spike mutations and immune escape. Nat. Rev. Microbiol. 19(7), 409–424 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Abdool Karim, S.S., de Oliveira, T.: New SARS-CoV-2 variants—clinical, public health, and vaccine implications. N. Engl. J. Med. 384(19), 1866–1868 (2021)

    Article  PubMed  Google Scholar 

  272. Chi, X., Yan, R., Zhang, J., Zhang, G., Zhang, Y., Hao, M., Zhang, Z., Fan, P., Dong, Y., Yang, Y., Chen, Z.: A neutralizing human antibody binds to the N-terminal domain of the Spike protein of SARS-CoV-2. Science 369(6504), 650–655 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Watanabe, Y., Berndsen, Z.T., Raghwani, J., Seabright, G.E., Allen, J.D., Pybus, O.G., McLellan, J.S., Wilson, I.A., Bowden, T.A., Ward, A.B., Crispin, M.: Vulnerabilities in coronavirus glycan shields despite extensive glycosylation. Nat. Commun. 11(1), 2688 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Shajahan, A., Supekar, N.T., Gleinich, A.S., Azadi, P.: Deducing the N-and O-glycosylation profile of the spike protein of novel coronavirus SARS-CoV-2. Glycobiology 30(12), 981–988 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Ahan, R.E., Hanifehnezhad, A., Kehribar, E.S., Oguzoglu, T.C., Foldes, K., Özçelik, C.E., Filazi, N., Öztop, S., Palaz, F., Önder, S., Bozkurt, E.U.: A Highly Potent SARS-CoV-2 Blocking Lectin Protein. ACS Infect. Dis. 8(7), 1253–1264 (2021)

    Article  Google Scholar 

  276. Wang, W., Li, Q., Wu, J., Hu, Y., Wu, G., Yu, C., Xu, K., Liu, X., Wang, Q., Huang, W., Wang, L., Wang, Y.: Lentil lectin derived from Lens culinaris exhibit broad antiviral activities against SARS-CoV-2 variants. Emerg Microbes Infect. 10(1), 1519–1529 (2021)

    Article  PubMed  PubMed Central  Google Scholar 

  277. Lokhande, K.B., Apte, G.R., Shrivastava, A., Singh, A., Pal, J.K., Swamy, K.V., Gupta, R.K.: Sensing the interactions between carbohydrate-binding agents and N-linked glycans of SARS-CoV-2 spike glycoprotein using molecular docking and simulation studies. J. Biomol. Struct. Dyn. 40(9), 3880–3898 (2022)

    Article  CAS  PubMed  Google Scholar 

  278. Saggam, A., Limgaokar, K., Borse, S., Chavan-Gautam, P., Dixit, S., Tillu, G., Patwardhan, B.: Withania somnifera (L.) Dunal: opportunity for clinical repurposing in COVID-19 management. Front. pharmacol. 835 (2021)

  279. Chikhale, R.V., Gurav, S.S., Patil, R.B., Sinha, S.K., Prasad, S.K., Shakya, A., Shrivastava, S.K., Gurav, N.S., Prasad, R.S.: Sars-cov-2 host entry and replication inhibitors from Indian ginseng: an in-silico approach. J. Biomol. Struct. Dyn. 39(12), 4510–4521 (2021)

    Article  CAS  PubMed  Google Scholar 

  280. Kumar, N., Shala, A.Y., Khurana, S.M.: Antiviral and immuno-boosting potential of Ashwagandha (Withania somnifera L.). Medicinal Plants-International Med. Plants - Int. J. Phytomed. 13(2), 237–44(2021)

  281. George, B.S., Silambarasan, S., Senthil, K., Jacob, J.P., Ghosh, D.M.: Characterization of an Insecticidal Protein from Withania somnifera Against Lepidopteran and Hemipteran Pest. Mol. Biotechnol. 60(4), 290–301 (2018)

    Article  CAS  PubMed  Google Scholar 

  282. Naidoo, D., Kar, P., Roy, A., Mutanda, T., Bwapwa, J., Sen, A., Anandraj, A.: Structural insight into the binding of cyanovirin-n with the spike glycoprotein, mpro and PLpro of SARS-CoV-2: Protein–protein interactions, dynamics simulations and free energy calculations. Molecules 26(17), 5114 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  283. O’Keefe, B.R., Giomarelli, B., Barnard, D.L., Shenoy, S.R., Chan, P.K., McMahon, J.B., Palmer, K.E., Barnett, B.W., Meyerholz, D.K., Wohlford-Lenane, C.L., McCray, P.B., Jr.: Broad-spectrum in vitro activity and in vivo efficacy of the antiviral protein griffithsin against emerging viruses of the family Coronaviridae. J. Virol. 84(5), 2511–2521 (2010)

  284. Keyaerts, E., Vijgen, L., Pannecouque, C., Van Damme, E., Peumans, W., Egberink, H., Balzarini, J., Van Ranst, M.: Plant lectins are potent inhibitors of coronaviruses by interfering with two targets in the viral replication cycle. Antivir. Res. 75(3), 179–187 (2007)

    Article  CAS  PubMed  Google Scholar 

  285. Jang, H., Lee, D.H., Kang, H.G., Lee, S.J.: Concanavalin A targeting N-linked glycans in spike proteins influence viral interactions. Dalton Trans. 49(39), 13538–13543 (2020)

    Article  CAS  PubMed  Google Scholar 

  286. Wang, D., Lu, J.: Glycan arrays lead to the discovery of autoimmunogenic activity of SARS-CoV.Physiol. Genom. 18(2), 245–248 (2004)

  287. Alsaidi, S., Cornejal, N., Mahoney, O., Melo, C., Verma. N., Bonnaire, T., Chang, T., O'Keefe, B.R., Sailer, J., Zydowsky, T.M., Teleshova, N., Romero, J.A.F.: Griffithsin and Carrageenan Combination Results in Antiviral Synergy against SARS-CoV-1 and 2 in a Pseudoviral Model. Mar. Drugs. 19(8), 418 (2021)

  288. Gooldy, M., Roux, C.M., LaRosa, S.P., Spaulding, N., Fisher, C.J., Jr.: Removal of clinically relevant SARS-CoV-2 variants by an affinity resin containing Galanthus nivalis agglutinin. PLoS ONE 17(7), e0272377 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  289. Idrees, M., Khan, S., Memon, N.H., Zhang, Z.: Effect of the Phytochemical Agents against the SARS-CoV and Some of them Selected for Application to COVID-19: A Mini-Review. Curr. Pharm. Biotechnol. 22(4), 444–450 (2021)

    Article  CAS  PubMed  Google Scholar 

  290. Wang, W., Sun, J., Liu, C., Xue, Z.: Application of immunostimulants in aquaculture: current knowledge and future perspectives. Aquac. Res. 48(1), 1–23 (2017)

    Article  Google Scholar 

  291. Lavelle, E.C., Grant, G., Pusztai, A., Pfüller, U., Leavy, O., McNeela, E., Mills, K.H., O’Hagan, D.T.: Mistletoe lectins enhance immune responses to intranasally co-administered herpes simplex virus glycoprotein D2. Immunology 107(2), 268–274 (2002)

  292. Nascimento da Silva, L.C., Mendonça, J.S., de Oliveira, W.F., Batista, K.L., Zagmignan, A., Viana, I.F., dos Santos, Correia. M.T.: Exploring lectin–glycan interactions to combat COVID-19: Lessons acquired from other enveloped viruses. Glycobiology. 31(4), 358–571(2021)

  293. Kumar, A., Sharma, A., Tirpude, N.V., Padwad, Y., Hallan, V., Kumar, S.: Plant-derived immuno-adjuvants in vaccines formulation: a promising avenue for improving vaccines efficacy against SARS-CoV-2 virus. Pharmacol. Rep. 74(6), 1238–1254 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  294. Katoch, R., Tripathi, A.: Research advances and prospects of legume lectins. J. Biosci. 46(4) (2021)

  295. Sander, V.A., Corigliano, M.G., Clemente, M.: Promising plant-derived adjuvants in the development of coccidial vaccines. Front. Vet. Sci. 6, 20 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  296. Tripathi, S., Maiti, T.K.: Efficiency of heat denatured lectins from Abrus precatorius as immunoadjuvants. Food Agric. Immunol. 15(3–4), 279–287 (2003)

    Article  CAS  Google Scholar 

  297. Cardoso, M.R., Mota, C.M., Ribeiro, D.P., Noleto, P.G., Andrade, W.B., Souza, M.A., Silva, N.M., Mineo, T.W., Mineo, J.R., Silva, D.A.: Adjuvant and immunostimulatory effects of a D-galactose-binding lectin from Synadenium carinatum latex (ScLL) in the mouse model of vaccination against neosporosis. Vet. Res. 43, 1–3 (2012)

    Article  Google Scholar 

  298. Kang, J., Zuo, Y., Guo, Q., Wang, H., Liu, Q., Liu, Q., Xia, G., Kang, Y.: Xylaria hypoxylon lectin as adjuvant elicited Tfh cell responses. Scand. J. Immunol. 82(5), 436–442 (2015)

    Article  CAS  PubMed  Google Scholar 

  299. Frantz, M., Jung, M.L., Ribereau-Gayon, G., Anton, R.: Modulation of mistletoe (Viscum album L.) lectins cytotoxicity by carbohydrates and serum glycoproteins. Arzneimittelforschung. 50(05), 471–478 (2000)

  300. Moyle, P.M.: Biotechnology approaches to produce potent, self-adjuvanting antigen-adjuvant fusion protein subunit vaccines. Biotechnol. Adv. 35(3), 375–389 (2017)

    Article  CAS  PubMed  Google Scholar 

  301. Vetter, V., Denizer, G., Friedland, L.R., Krishnan, J., Shapiro, M.: Understanding modern-day vaccines: what you need to know. Ann. Med. 50(2), 110–120 (2018)

    Article  PubMed  Google Scholar 

  302. Shi, S., Zhu, H., Xia, X., Liang, Z., Ma, X., Sun, B.: Vaccine adjuvants: Understanding the structure and mechanism of adjuvanticity. Vaccine. 37(24), 3167–3178 (2019)

    Article  CAS  PubMed  Google Scholar 

  303. Azizi, A., Kumar, A., Diaz-Mitoma, F., Mestecky, J.: Enhancing oral vaccine potency by intestinal M cells. PLoS Pathog. 6(11), e1001147 (2010)

    Article  PubMed  PubMed Central  Google Scholar 

  304. Unitt, J., Hornigold, D.: Plant lectins are novel Toll-like receptor agonists. Biochem. Pharmacol. 81(11), 1324–1328 (2011)

    Article  CAS  PubMed  Google Scholar 

  305. Montassier, H.J., Maria de Fatima, S.M., Piza, V.M., Okino, C.H., Brentano, L., Richtzenhain, L.J.: Development of a microplate lectin-capture RT-PCR (MLC-RT-PCR) for the detection of avian infectious bronchitis virus. (2013)

  306. Wang, B., Anzai, J.I.: Recent progress in lectin-based biosensors. Materials. 8(12), 8590–8607 (2015)

    CAS  PubMed  Google Scholar 

  307. Simão, E.P., Silva, D.B., Cordeiro, M.T., Gil, L.H., Andrade, C.A., Oliveira, M.D.: Nanostructured impedimetric lectin-based biosensor for arboviruses detection. Talanta 208, 120338 (2020)

    Article  PubMed  Google Scholar 

  308. Oliveira, M.D., Nogueira, M.L., Correia, M.T., Coelho, L.C., Andrade, C.A.: Detection of dengue virus serotypes on the surface of gold electrode based on Cratylia mollis lectin affinity. Sens. Actuators B Chem. 155(2), 789–795 (2011)

    Article  CAS  Google Scholar 

  309. Andrade, C.A., Oliveira, M.D., De Melo, C.P., Coelho, L.C., Correia, M.T., Nogueira, M.L., Singh, P.R., Zeng, X.: Diagnosis of dengue infection using a modified gold electrode with hybrid organic–inorganic nanocomposite and Bauhinia monandra lectin. J. Colloid Interface Sci. 362(2), 517–523 (2011)

    Article  CAS  PubMed  Google Scholar 

  310. Silva, M.L.: Lectin-based biosensors as analytical tools for clinical oncology. Cancer Lett. 436, 63–74 (2018)

    Article  CAS  PubMed  Google Scholar 

  311. de Oliveira, W.F., dos Santos Silva, P.M., Coelho, L.C., dos Santos Correia, M.T.: Biomarkers, biosensors and biomedicine. Curr. Med. Chem. 27(21), 3519–3533 (2020)

    Article  PubMed  Google Scholar 

  312. Mislovičová, D., Gemeiner, P., Kozarova, A., Kožár, T., Lectinomics I.: Relevance of exogenous plant lectins in biomedical diagnostics. Biologia. 64(1), 1–9 (2009)

  313. Beyer, V.P., Monaco, A., Napier, R., Yilmaz, G., Becer, C.R.: Bottlebrush glycopolymers from 2-oxazolines and acrylamides for targeting dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin and mannose-binding lectin. Biomacromol 21(6), 2298–2308 (2020)

    Article  CAS  Google Scholar 

  314. Gupta, A., Gupta, G.S.: Applications of mannose-binding lectins and mannan glycoconjugates in nanomedicine. J. Nanopart. Res. 24(11), 228 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  315. Azimzadeh, M., Nasirizadeh, N., Rahaie, M., Naderi-Manesh, H.: Early detection of Alzheimer’s disease using a biosensor based on electrochemically-reduced graphene oxide and gold nanowires for the quantification of serum microRNA-137. RSC Adv. 7(88), 55709–55719 (2017)

  316. Velusamy, V., Arshak, K., Korostynska, O., Oliwa, K., Adley, C.: An overview of foodborne pathogen detection: In the perspective of biosensors. Biotechnol. Adv. 28(2), 232–254 (2010)

    Article  CAS  PubMed  Google Scholar 

  317. Abbas, H.S., Kotakonda, M.: Lectins Are the Sparkle of Hope for Combating Coronaviruses and the Global COVID-19. Adv. Pharm. Bull. 12(2), 319–328 (2021)

    PubMed  PubMed Central  Google Scholar 

  318. Mu, J., Hirayama, M., Sato, Y., Morimoto, K., Hori, K.: A novel high-mannose specific lectin from the green alga Halimeda renschii exhibits a potent anti-influenza virus activity through high-affinity binding to the viral hemagglutinin. Mar. Drugs 15(8), 255 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  319. Wallis, R., Dodd, R.B.: Interaction of mannose-binding protein with associated serine proteases: effects of naturally occurring mutations. J. Biol. Chem. 275(40), 30962–30969 (2000)

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

RA and KY are grateful to Indian Council of Medical Research (ICMR), New Delhi, India, for providing financial assistance in the form of approved ICMR Adhoc Project No. 2021-9508 (RFC No. ITR/Adhoc/2/2023-24 dated 05/09/2023; File No. 17X (3)/Adhoc/34/2022-ITR).

Author information

Authors and Affiliations

Authors

Contributions

The authors confirm contribution to the paper as follows: KY, RA, AY and UND conceived the original idea and designed the contents of the manuscript; AG, KY, AY and DK drafted the manuscript. AG, AS and MAK prepared diagrams. RA, KY, AY, and UND critically edited and revised the final version of the manuscript. All authors provided critical feedback and helped shape the final manuscript.

Corresponding authors

Correspondence to Kusum Yadav or Rumana Ahmad.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, A., Yadav, K., Yadav, A. et al. Mannose-specific plant and microbial lectins as antiviral agents: A review. Glycoconj J 41, 1–33 (2024). https://doi.org/10.1007/s10719-023-10142-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-023-10142-7

Keywords

Navigation