Skip to main content

Advertisement

Log in

Signaling domains of cancer-associated glycolipids

  • Comprehensive Review Article
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Immunotherapy of malignant cancers is now becoming one of representative approaches to overcome cancers. To construct strategies for immunotherapy, presence of tumor-specific antigens should be a major promise. A number of cancer specific- or cancer-associated antigens have been reported based on various experimental sets and various animal systems. The most reasonable strategy to define tumor-specific antigens might be “autologous typing” performed by Old’s group, proposing three classes of tumor-antigens recognized by host immune systems of cancer patients. Namely, class 1, individual antigens that is present only in the patient’s sample analyzed; class 2, shared antigens that can be found only in some group of cancers in some patients, but not in normal cells and tissues; class 3, universal antigens that are present in some cancers but also in normal cells and tissues with different densities. Sen Hakomori reported there were novel carbohydrates in cancers that could not be detected in normal cells mainly by biochemical approaches. Consequently, many of class 2 cancer-specific antigens have been revealed to be carbohydrate antigens, and been used for cancer diagnosis and treatment. Not only as cancer markers, but roles of those cancer-associated carbohydrates have also been recognized as functional molecules in cancer cells. In particular, roles of complex carbohydrates in the regulation of cell signaling on the cell surface microdomains, glycolipid-enriched microdomain (GEM)/rafts have been reported by Hakomori and many other researchers including us. The processes and present status of these studies on cancer-associated glycolipids were summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Old, L.J., Boyse, E.A.: Antigenic properties of experimental leukemias. i. serological studies in vitro with spontaneous and radiation-induced leukemias. J. Natl. Cancer Inst. 31, 977–995 (1963)

    CAS  PubMed  Google Scholar 

  2. Old, L.J., Boyse, E.A., Stockert, E.: The G (Gross) leukemia antigen. Cancer Res. 25, 813–819 (1965)

    CAS  PubMed  Google Scholar 

  3. Old, L.J., Stockert, E.: Immunogenetics of cell surface antigens of mouse leukemia. Annu. Rev. Genet. 11, 127–160 (1977). https://doi.org/10.1146/annurev.ge.11.120177.001015

    Article  CAS  PubMed  Google Scholar 

  4. Klein, G.: Tumor-specific transplantation antigens: G. H. A. Clowes memorial lecture. Cancer Res. 28, 625–635 (1968)

    CAS  PubMed  Google Scholar 

  5. Klein, G., Sjogren, H.O., Klein, E., Hellstrom, K.E.: Demonstration of resistance against methylcholanthrene-induced sarcomas in the primary autochthonous host. Cancer Res. 20, 1561–1572 (1960)

    CAS  PubMed  Google Scholar 

  6. Morton, D.L., Miller, G.F., Wood, D.A.: Demonstration of tumor-specific immunity against antigens unrelated to the mammary tumor virus in spontaneous mammary adenocarcinomas. J. Natl. Cancer Inst. 42, 289–301 (1969)

    CAS  PubMed  Google Scholar 

  7. Old, L.J.: Cancer Immunology: the search for specificity – G.H.A. Clows Memorial Lecture. Cancer Res. 41, 361–375 (1981)

    CAS  PubMed  Google Scholar 

  8. Watanabe, T., Pukel, C.S., Takeyama, H., Lloyd, K.O., Shiku, H., Li, L.T., Travassos, L.R., Oettgen, H.F., Old, L.J.: Human melanoma antigen AH is an autoantigenic ganglioside related to GD2. J. Exp. Med. 156, 1884–1889 (1982). https://doi.org/10.1084/jem.156.6.1884

    Article  CAS  PubMed  Google Scholar 

  9. Dippold, W.G., Lloyd, K.O., Li, L.T., Ikeda, H., Oettgen, H.F., Old, L.J.: Cell surface antigens of human malignant melanoma: definition of six antigenic systems with mouse monoclonal antibodies. Proc. Natl. Acad. Sci. U.S.A. 77, 6114–6118: (1980). https://doi.org/10.1073/pnas.77.10.6114

  10. Pukel, C.S., Lloyd, K.O., Travassos, L.R., Dippold, W.G., Oettgen, H.F., Old, L.J.: GD3, a prominent ganglioside of human melanoma. Detection and characterisation by mouse monoclonal antibody. J. Exp. Med. 155, 1133–1147 (1982). https://doi.org/10.1084/jem.155.4.1133

    Article  CAS  PubMed  Google Scholar 

  11. Yamaguchi, H., Furukawa, K., Fortunato, S.R., Livingston, P.O., Lloyd, K.O., Oettgen, H.F., Old, L.J.: Cell-surface antigens of melanoma recognized by human monoclonal antibodies. Proc. Natl. Acad. Sci. U.S.A. 84, 2416–2420: (1987). https://doi.org/10.1073/pnas.84.8.2416

  12. Schrump, D.S., Furukawa, K., Yamaguchi, H., Lloyd, K.O., Old, L.J.: Recognition of galactosylgloboside by monoclonal antibodies derived from patients with primary lung cancer. Proc. Natl. Acad. Sci. USA. 85, 4441–4445: (1988). https://doi.org/10.1073/pnas.85.12.4441

  13. Houghton, A.N., Mintzer, D., Cordon-Cardo, C., Welt, S., Fliegel, B., Vadhan, S., Carswell, E., Melamed, M.R., Oettgen, H.F., Old, L.J.: Mouse monoclonal IgG3 antibody detecting GD3 ganglioside: a phase I trial in patients with malignant melanoma. Proc. Natl. Acad. Sci. U.S.A. 82, 1242–1246: (1985). https://doi.org/10.1073/pnas.82.4.1242

  14. Irie, R.F., Morton, D.L.: Regression of cutaneous metastatic melanoma by intralesional injection with human monoclonal antibody to ganglioside GD2. Proc. Natl. Acad. Sci. U.S.A. 83, 8694–8698: (1986). https://doi.org/10.1073/pnas.83.22.8694

  15. Cahan, L.D., Irie, R.F., Singh, R., Cassidenti, A., Paulson, J.C.: Identification of a human neuroectodermal tumor antigen (OFA-I-2) as ganglioside GD2. Proc. Natl. Acad. Sci. U.S.A. 79, 7629–7633: (1982). https://doi.org/10.1073/pnas.79.24.7629/

  16. Gahmberg, C.G., Hakomori, S.: Surface carbohydrates of hamster fibroblasts. I. Chemical characterization of surface-labeled glycosphingolipids and aspecific ceramide tetrasaccharide for transformants. J. Biol. Chem. 250, 2438–2446 (1975)

    Article  CAS  Google Scholar 

  17. Hakomori, S.: Tmor-associated glycolipid antigens, their metabolism and organization. Chem. Phys. Lipids. 42, 209–233 (1986). https://doi.org/10.1016/0009-3084(86)90054-x

    Article  CAS  PubMed  Google Scholar 

  18. Lloyd, K.O.: Humoral immune responses to tumor-associated carbohydrate antigens. Semin. Cancer Biol. 2, 421–431 (1991)

    CAS  PubMed  Google Scholar 

  19. Lloyd, K.O., Old, L.J.: Human monoclonal antibodies. Cancer Res. 49, 3445–3451 (1989)

    CAS  PubMed  Google Scholar 

  20. Indellicato, R., Zulueta, A., Caretti, A., Trinchera, M.: Complementary Use of Carbohydrate Antigens Lewis a, Lewis b, and Sialyl-Lewis a (CA19.9 Epitope) in Gastrointestinal Cancers: Biological Rationale towards a Personalized Clinical Application. Cancers. 12, 1509 (2020). https://doi.org/10.3390/cancers12061509

    Article  CAS  PubMed Central  Google Scholar 

  21. Furukawa, K., Lloyd, K.O.: Gangliosides in melanoma. In: Ferrone, S. (ed.) Human melanoma: from basic research to clinical application. pp. 15–30. Springer, Heidelburg (1990)

  22. Portoukalian, J., Zwingelstein, G., Doré, J.F.: Lipid composition of human malignant melanoma tumors at various levels of malignant growth. Eur. J. Biochem. 94, 19–23 (1979). https://doi.org/10.1111/j.1432-1033.1979.tb12866.x

    Article  CAS  PubMed  Google Scholar 

  23. Carubia, J.M., Yu, R.K., Macala, L.J., Kirkwood, J.M., Varga, J.M.: Gangliosides of normal and neoplastic human melanocytes. Biochem. Biophys. Res. Commun. 120, 500–504 (1984). https://doi.org/10.1016/0006-291x(84)91282-8

    Article  CAS  PubMed  Google Scholar 

  24. Saito, M., Yu, R.K., Cheung, N.K.: Ganglioside GD2 specificity of monoclonal antibodies to human neuroblastoma cell. Biochem. Biophys. Res. Commun. 127, 1–7 (1985). https://doi.org/10.1016/s0006-291x(85)80117-0

  25. Schultz, G., Cheresh, D.A., Varki, N.M., Yu, A., Staffileno, L.K., Reisfeld, R.A.: Detection of ganglioside GD2 in tumor tissues and sera of neuroblastoma patients. Cancer Res. 44, 5914–5920 (1984)

    Google Scholar 

  26. Fredman, P., von Holst, H., Collins, V.P., Ammar, A., Dellheden, B., Wahren, B., Granholm, L., Svennerholm, L.: Potential ganglioside antigens associated with human gliomas. Neurol. Res. 8, 123–126 (1986). https://doi.org/10.1080/01616412.1986.11739744

    Article  CAS  PubMed  Google Scholar 

  27. Wikstrand, C.J., Fredman, P., Svennerholm, L., Bigner, D.D.: Detection of glioma-associated gangliosides GM2, GD2, GD3, 3’-isoLM1 3’,6’-isoLD1 in central nervous system tumors in vitro and in vivo using epitope-defined monoclonal antibodies. Prog. Brain Res. 101, 213–223 (1994). https://doi.org/10.1016/s0079-6123(08)61951-2

    Article  CAS  PubMed  Google Scholar 

  28. Kawai, K., Takahashi, H., Watarai, S., Ishizu, H., Fukai, K., Tanabe, Y., Nose, S., Kuroda, S.: Occurrence of ganglioside GD3 in neoplastic astrocytes. An immunocytochemical study in humans. Virchows Arch. 434, 201–205 (1999). https://doi.org/10.1007/s004280050328

    Article  CAS  PubMed  Google Scholar 

  29. Vukelić, Z., Kalanj-Bognar, S., Froesch, M., Bîndila, L., Radić, B., Allen, M., Peter-Katalinić, J., Zamfir, A.D.: Human gliosarcoma-associated ganglioside composition is complex and distinctive as evidenced by high-performance mass spectrometric determination and structural characterization. Glycobiology. 17, 504–515 (2007). https://doi.org/10.1093/glycob/cwm012

    Article  CAS  PubMed  Google Scholar 

  30. Shibuya, H., Hamamura, K., Hotta, H., Matsumoto, Y., Nishida, Y., Hattori, H., Furukawa, K., Ueda, M., Furukawa, K.: Enhancement of malignant properties of human osteosarcoma cells with disialyl gangliosides GD2/GD3. Cancer Sci. 103, 1656–1664 (2012). https://doi.org/10.1111/j.1349-7006.2012.02344.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Azuma, K., Tanaka, M., Uekita, T., Inoue, S., Yokota, J., Ouchi, Y., Sakai, R.: Tyrosine phosphorylation of paxillin affects the metastatic potential of human osteosarcoma. Oncogene. 24, 4754–4764 (2005). https://doi.org/10.1038/sj.onc.1208654

    Article  CAS  PubMed  Google Scholar 

  32. Cheresh, D.A., Rosenberg, J., Mujoo, K., Hirschowitz, L., Reisfeld, R.A.: Biosynthesis and expression of the disialoganglioside GD2, a relevant target antigen on small cell lung carcinoma for monoclonal antibody-mediated cytolysis. Cancer Res. 46, 5112–5118 (1986)

    CAS  PubMed  Google Scholar 

  33. Yoshida, S., Fukumoto, S., Kawaguchi, H., Sato, S., Ueda, R., Furukawa, K.: Ganglioside G(D2) in small cell lung cancer cell lines: enhancement of cell proliferation and mediation of apoptosis. Cancer Res. 61, 4244–4252 (2001)

    CAS  PubMed  Google Scholar 

  34. Siddiqui, B., Buehler, J., DeGregorio, M.W., Macher, B.A.: Differential expression of ganglioside GD3 by human leukocytes and leukemia cells. Cancer Res. 44, 5262–5265 (1984)

    CAS  PubMed  Google Scholar 

  35. Merritt, W.D., Casper, J.T., Lauer, S.J., Reaman, G.H.: Expression of GD3 ganglioside in childhood T-cell lymphoblastic malignancies. Cancer Res. 47, 1724–1730 (1987)

    CAS  PubMed  Google Scholar 

  36. Furukawa, K., Akagi, T., Nagata, Y., Yamada, Y., Shimotohno, K., Cheung, N.K., Shiku, H., Furukawa, K.: GD2 ganglioside on human T-lymphotropic virus type I-infected T cells: possible activation of beta-1,4-N-acetylgalactosaminyltransferase gene by p40tax. Proc. Natl. Acad. Sci. U.S.A. 90, 1972–1976: (1993). https://doi.org/10.1073/pnas.90.5.1972

  37. Okada, M., Furukawa, K., Yamashiro, S., Yamada, Y., Haraguchi, M., Horibe, K., Kato, K., Tsuji, Y., Furukawa, K.: High expression of ganglioside alpha-2,8-sialyltransferase (GD3 synthase) gene in adult T-cell leukemia cells unrelated to the gene expression of human T-lymphotropic virus type I. Cancer Res. 56, 2844–2848 (1996)

    CAS  PubMed  Google Scholar 

  38. Cazet, A., Bobowski, M., Rombouts, Y., Lefebvre, J., Steenackers, A., Popa, I., Guérardel, Y., Le Bourhis, X., Tulasne, D., Delannoy, P.: The ganglioside G(D2) induces the constitutive activation of c-Met in MDA-MB-231 breast cancer cells expressing the G(D3) synthase. Glycobiology. 22, 806–816 (2012). https://doi.org/10.1093/glycob/cws049

    Article  CAS  PubMed  Google Scholar 

  39. De Giorgi, U., Cohen, E.N., Gao, H., Mego, M., Lee, B.N., Lodhi, A., Cristofanilli, M., Lucci, A., Reuben, J.M.: Mesenchymal stem cells expressing GD2 and CD271 correlate with breast cancer-initiating cells in bone marrow. Cancer Biol. Ther. 11, 812–815 (2011). https://doi.org/10.4161/cbt.11.9.15178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wiels, J., Fellous, M., Tursz, T.: Monoclonal antibody against a Burkitt lymphoma-associated antigen. Proc. Natl. Acad. Sci. U.S.A. 78, 6485–6488: (1981). https://doi.org/10.1073/pnas.78.10.6485

  41. Nagata, Y., Yamashiro, S., Yodoi, J., Lloyd, K.O., Shiku, H., Furukawa, K.: Expression cloning of beta 1,4 N-acetylgalactosaminyltransferase cDNAs that determine the expression of GM2 and GD2 gangliosides. J. Biol. Chem. 267, 12082–12089 (1992)

    Article  CAS  Google Scholar 

  42. Haraguchi, M., Yamashiro, S., Yamamoto, A., Furukawa, K., Takamiya, K., Lloyd, K.O., Shiku, H., Furukawa, K.: Isolation of GD3 synthase gene by expression cloning of GM3 alpha-2,8-sialyltransferase cDNA using anti-GD2 monoclonal antibody. Proc. Natl. Acad. Sci. U S A. 91, 10455–10459 (1994). https://doi.org/10.1073/pnas.91.22.10455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Nara, K., Watanabe, Y., Maruyama, K., Kasahara, K., Nagai, Y., Sanai, Y.: Expression cloning of a CMP-NeuAc:NeuAc alpha 2-3Gal beta 1-4Glc beta 1–1’Cer alpha 2,8-sialyltransferase (GD3 synthase) from human melanoma cells. Proc. Natl. Acad. Sci. U.S.A. 91, 7952–7956: (1994). https://doi.org/10.1073/pnas.91.17.7952

  44. Sasaki, K., Kurata, K., Kojima, N., Kurosawa, N., Ohta, S., Hanai, N., Tsuji, S., Nishi, T.: Expression cloning of a GM3-specific alpha-2,8-sialyltransferase (GD3synthase). J. Biol. Chem. 269, 15950–15956 (1994)

    Article  CAS  Google Scholar 

  45. Miyazaki, H., Fukumoto, S., Okada, M., Hasegawa, T., Furukawa, K.: Expression cloning of rat cDNA encoding UDP-galactose:GD2 beta1,3-galactosyl-transferase that determines the expression of GD1b/GM1/GA1. J. Biol. Chem. 272, 24794–24799 (1997). https://doi.org/10.1074/jbc.272.40.24794

    Article  CAS  PubMed  Google Scholar 

  46. Furukawa, K., Tokuda, N., Okuda, T., Tajima, O., Furukawa, K.: Glycosphingolipids in engineered mice: insights into function. Semin Cell. Dev. Biol. 15, 389–396 (2004). https://doi.org/10.1016/j.semcdb.2004.03.006

    Article  CAS  PubMed  Google Scholar 

  47. Stanley, P.: What Have We Learned from Glycosyltransferase Knockouts in Mice? J. Mol. Biol. 428, 3166–3182 (2016). https://doi.org/10.1016/j.jmb.2016.03.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yamakawa, T., Iida, T.: Globotetraosylceramide (Gb4) Immuno-chemical study on the red blood cells. I. Globoside, as the agglutinogen of the ABO system on erythrocytes. Jpn J. Exp. Med. 23, 327–331 (1953)

    CAS  PubMed  Google Scholar 

  49. Yamakawa, T., Yokoyama, S., Handa, N.: Chemistry of lipids of posthemolytic residue or stroma of erythrocytes. XI. Structure of globoside, the main mucolipid of human erythrocytes. J. Biochem. 53, 28–36 (1963). https://doi.org/10.1093/oxfordjournals.jbchem.a127654

    Article  CAS  PubMed  Google Scholar 

  50. Furukawa, K., Iwamura, K., Uchikawa, M., Sojka, B.N., Wiels, J., Okajima, T., Urano, T., Furukawa, K.: Molecular basis for the p phenotype. Identification of distinct and multiple mutations in the alpha 1,4-galactosyltransferase gene in Swedish and Japanese individuals. J. Biol. Chem. 275, 37752–37756 (2000). https://doi.org/10.1074/jbc.C000625200

    Article  CAS  PubMed  Google Scholar 

  51. Iwamura, K., Furukawa, K., Uchikawa, M., Sojka, B.N., Kojima, Y., Wiels, J., Shiku, H., Urano, T., Furukawa, K.: The blood group P1 synthase gene is identical to the Gb3/CD77 synthase gene. A clue to the solution of the P1/P2/p puzzle. J. Biol. Chem. 278, 44429–44438 (2003). https://doi.org/10.1074/jbc.M301609200

    Article  CAS  PubMed  Google Scholar 

  52. Kannagi, R., Cochran, N.A., Ishigami, F., Hakomori, S., Andrews, P.W., Knowles, B.B., Solter, D.: Stage-specific embryonic antigens (SSEA-3 and – 4) are epitopes of a unique globo-series ganglioside isolated from human teratocarcinoma cells. EMBO J. 2, 2355–2361 (1983)

    Article  CAS  Google Scholar 

  53. Wakao, S., Kushida, Y., Dezawa, M.: Basic Characteristics of Muse Cells. Adv. Exp. Med. Biol. 1103, 13–41 (2018). https://doi.org/10.1007/978-4-431-56847-6_2

    Article  CAS  PubMed  Google Scholar 

  54. Mangeney, M., Richard, Y., Coulaud, D., Tursz, T., Wiels, J.: CD77: an antigen of germinal center B cells entering apoptosis. Eur. J. Immunol. 21, 1131–1140 (1991). doi:https://doi.org/10.1002/eji.1830210507

    Article  CAS  PubMed  Google Scholar 

  55. Kovbasnjuk, O., Mourtazina, R., Baibakov, B., Wang, T., Elowsky, C., Choti, M.A., Kane, A., Donowitz, M.: The glycosphingolipid globotriaosylceramide in the metastatic transformation of colon cancer. Proc. Natl. Acad. Sci. U. S. A. 102, 19087–19092: (2005) doi: https://doi.org/10.1073/pnas.0506474102

  56. Stimmer, L., Dehay, S., Nemati, F., Massonnet, G., Richon, S., Decaudin, D., Klijanienko, J., Johannes, L.: Human breast cancer and lymph node metastases express Gb3 and can be targeted by STxB-vectorized chemotherapeutic compounds. BMC Cancer. 14, 916 (2014). doi:https://doi.org/10.1186/1471-2407-14-916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Geyer, P.E., Maak, M., Nitsche, U., Perl, M., Novotny, A., Slotta-Huspenina, J., Dransart, E., Holtorf, A., Johannes, L., Janssen, K.P.: Gastric Adenocarcinomas Express the Glycosphingolipid Gb3/CD77: Targeting of Gastric Cancer Cells with Shiga Toxin B-Subunit. Mol. Cancer Ther. 15, 1008–10017 (2016). doi:https://doi.org/10.1158/1535-7163.MCT-15-0633

    Article  CAS  PubMed  Google Scholar 

  58. Senda, M., Ito, A., Tsuchida, A., Hagiwara, T., Kaneda, T., Nakamura, Y., Kasama, K., Kiso, M., Yoshikawa, K., Katagiri, Y., Ono, Y., Ogiso, M., Urano, T., Furukawa, K., Oshima, S., Furukawa, K.: Identification and expression of a sialyltransferase responsible for the synthesis of disialylgalactosylgloboside in normal and malignant kidney cells: downregulation of ST6GalNAc VI in renal cancers. Biochem. J. 402, 459–470 (2007). doi:https://doi.org/10.1042/BJ20061118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Chang, W.W., Lee, C.H., Lee, P., Lin, J., Hsu, C.W., Hung, J.T., Lin, J.J., Yu, J.C., Shao, L.E., Yu, J., Wong, C.H., Yu, A.L.: Expression of Globo H and SSEA3 in breast cancer stem cells and the involvement of fucosyl transferases 1 and 2 in Globo H synthesis. Proc. Natl. Acad. Sci. U S A. 105, 11667–11672 (2008). doi:https://doi.org/10.1073/pnas.0804979105

    Article  PubMed  PubMed Central  Google Scholar 

  60. Kojima, Y., Fukumoto, S., Furukawa, K., Okajima, T., Wiels, J., Yokoyama, K., Suzuki, Y., Urano, T., Ohta, M., Furukawa, K.: Molecular cloning of globotriaosylceramide/CD77 synthase, a glycosyltransferase that initiates the synthesis of globo series glyco-sphingolipids. J. Biol. Chem. 275, 15152–15156 (2000). https://doi.org/10.1074/jbc.M909620199

    Article  CAS  PubMed  Google Scholar 

  61. Furukawa, K., Yokoyama, K., Sato, T., Wiels, J., Hirayama, Y., Ohta, M., Furukawa, K.: Gb3 and its derivatives in cultured cells Expression of the Gb3/CD77 synthase gene in megakaryoblastic leukemia cells: implication in the sensitivity to verotoxins. J. Biol. Chem. 277, 11247–11254 (2002). https://doi.org/10.1074/jbc.M109519200

    Article  CAS  PubMed  Google Scholar 

  62. Okuda, T., Tokuda, N., Numata, S., Ito, M., Ohta, M., Kawamura, K., Wiels, J., Urano, T., Tajima, O., Furukawa, K., Furukawa, K.: Targeted disruption of Gb3/CD77 synthase gene resulted in the complete deletion of globo-series glycosphingolipids and loss of sensitivity to verotoxins. J. Biol. Chem. 281(15), 10230–10235 (2006). https://doi.org/10.1074/jbc.M600057200

    Article  CAS  PubMed  Google Scholar 

  63. Kondo, Y., Ikeda, K., Tokuda, N., Nishitani, C., Ohto, U., Akashi-Takamura, S., Ito, Y., Uchikawa, M., Kuroki, Y., Taguchi, R., Miyake, K., Zhang, Q., Furukawa, K., Furukawa, K.: TLR4-MD-2 complex is negatively regulated by an endogenous ligand, globotetraosyl-ceramide. Proc. Natl. Acad. Sci. U.S.A. 110, 4714–4719: (2013). https://doi.org/10.1073/pnas.1218508110

  64. Furukawa, K., Ohkawa, Y., Yamauchi, Y., Hamamura, K., Ohmi, Y., Furukawa, K.: Fine tuning of cell signals by glycosylation. J. Biochem. 151, 573–578 (2012). https://doi.org/10.1093/jb/mvs043

    Article  CAS  PubMed  Google Scholar 

  65. Furukawa, K., Hamamura, K., Ohkawa, Y., Ohmi, Y., Furukawa, K.: Disialyl ganglio-sides enhance tumor phenotypes with differential modalities. Glycoconj. J. 29, 579–584 (2012). https://doi.org/10.1007/s10719-012-9423-0

    Article  CAS  PubMed  Google Scholar 

  66. Hakomori, S.: Cancer-associated glycosphingolipid antigens: their structure, organiza-tion, and function. Acta Anat. (Basel). 161(1–4), 79–90 (1998). https://doi.org/10.1159/000046451

    Article  CAS  Google Scholar 

  67. Hakomori, S., Yamamura, S., Handa, A.K.: Signal transduction through glyco(sphingo-lipids. Introduction and recent studies on glyco(sphingo)lipid-enriched micro-domains. Ann. NY Acad. Sci. 845, 1–10 (1998). https://doi.org/10.1111/j.1749-6632.1998.tb09657.x

    Article  CAS  PubMed  Google Scholar 

  68. Hakomori, S.: Structure, organization, and function of glyco-sphingolipids in membrane. Curr. Opin. Hematol. 10, 16–24 (2003). https://doi.org/10.1097/00062752-200301000-00004

    Article  CAS  PubMed  Google Scholar 

  69. Hamamura, K., Furukawa, K., Hayashi, T., Hattori, T., Nakano, J., Nakashima, H., Okuda, T., Mizutani, H., Hattori, H., Ueda, M., Urano, T., Lloyd, K.O., Furukawa, K.: Ganglioside GD3 promotes cell growth and invasion through p130Cas and paxillin in malignant melanoma cells. Proc. Natl. Acad. Sci. U.S.A. 102, 11041–11046: (2005). https://doi.org/10.1073/pnas.0503658102

  70. Hamamura, K., Tsuji, M., Ohkawa, Y., Nakashima, H., Miyazaki, S., Urano, T., Yamamoto, N., Ueda, M., Furukawa, K., Furukawa, K.: Focal adhesion kinase as well as p130Cas and paxillin is crucially involved in the enhanced malignant properties under expression of ganglioside GD3 in melanoma cells. Biochim. Biophys. Acta. 1780(3), 513–519 (2008). https://doi.org/10.1016/j.bbagen.2007.11.002

    Article  CAS  PubMed  Google Scholar 

  71. Ohkawa, Y., Miyazaki, S., Hamamura, K., Kambe, M., Miyata, M., Tajima, O., Ohmi, Y., Yamauchi, Y., Furukawa, K., Furukawa, K.: Ganglioside GD3 enhances adhesion signals and augments malignant properties of melanoma cells by recruiting integrins to glycolipid-enriched microdomains. J. Biol. Chem. 285, 27213–27223 (2010). https://doi.org/10.1074/jbc.M109.087791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Aixinjueluo, W., Furukawa, K., Zhang, Q., Hamamura, K., Tokuda, N., Yoshida, S., Ueda, R., Furukawa, K.: Mechanisms for the apoptosis of small cell lung cancer cells induced by anti-GD2 monoclonal antibodies: roles of anoikis. J. Biol. Chem. 280, 29828–29836 (2005). https://doi.org/10.1074/jbc.M414041200

    Article  CAS  PubMed  Google Scholar 

  73. Nishio, M., Fukumoto, S., Furukawa, K., Ichimura, A., Miyazaki, H., Kusunoki, S., Urano, T., Furukawa, K.: Overexpressed GM1 suppresses nerve growth factor (NGF) signals by modulating the intracellular localization of NGF receptors and membrane fluidity in PC12 cells. J. Biol. Chem. 279, 33368–33378 (2004). https://doi.org/10.1074/jbc.M403816200

    Article  CAS  PubMed  Google Scholar 

  74. Fukumoto, S., Mutoh, T., Hasegawa, T., Miyazaki, H., Okada, M., Goto, G., Furukawa, K., Urano, T.: GD3 synthase gene expression in PC12 cells results in the continuous activation of TrkA and ERK1/2 and enhanced proliferation. J. Biol. Chem. 275, 5832–5838 (2000). https://doi.org/10.1074/jbc.275.8.5832

    Article  CAS  PubMed  Google Scholar 

  75. Mitsuda, T., Furukawa, K., Fukumoto, S., Miyazaki, H., Urano, T., Furukawa, K.: Overexpression of ganglioside GM1 results in the dispersion of platelet-derived growth factor receptor from glycolipid-enriched microdomains and in the suppression of cell growth signals. J. Biol. Chem. 277, 11239–11246 (2002). https://doi.org/10.1074/jbc.M107756200

    Article  CAS  PubMed  Google Scholar 

  76. Chen, H.H., Fukumoto, S., Furukawa, K., Nakao, A., Akiyama, S., Urano, T., Furukawa, K.: Suppression of lung metastasis of mouse Lewis lung cancer P29 with transfection of the ganglioside GM2/GD2 synthase gene. Int. J. Cancer. 103, 169–176 (2003). https://doi.org/10.1002/ijc.10797

    Article  CAS  PubMed  Google Scholar 

  77. Zhang, Q., Furukawa, K., Chen, H.H., Sakakibara, T., Urano, T., Furukawa, K.: Metastatic potential of mouse Lewis lung cancer cells is regulated via ganglioside GM1 by modulating the matrix metalloprotease-9 localization in lipid rafts. J. Biol. Chem. 28, 18145–18155 (2006). https://doi.org/10.1074/jbc.M512566200)

    Article  Google Scholar 

  78. Hyuga, S., Yamagata, S., Takatsu, Y., Hyuga, M., Nakanishi, H., Furukawa, K., Yamagata, T.: Suppression by ganglioside GD1A of migration capability, adhesion to vitronectin and metastatic potential of highly metastatic FBJ-LL cells. Int. J. Cancer. 83, 685–691 (1999). doi:https://doi.org/10.1002/(sici)1097-0215(19991126)83:5%3C685::aid-ijc20%3E3.0.co;2-4

    Article  CAS  PubMed  Google Scholar 

  79. Tsurifune, T., Ito, T., Li, X.J., Yamashiro, S., Okada, M., Kanematsu, T., Shiku, H., Furukawa, K.: Alteration of tumor phenotypes of B16 melanoma after genetic remodeling of the ganglioside profile. Int. J. Oncol. 17, 159–165 (2000)

    CAS  PubMed  Google Scholar 

  80. Dong, Y., Ikeda, K., Hamamura, K., Zhang, Q., Kondo, Y., Matsumoto, Y., Ohmi, Y., Yamauchi, Y., Furukawa, K., Taguchi, R., Furukawa, K.: GM1/GD1b/GA1 synthase expression results in the reduced cancer phenotypes with modulation of composition and raft-localization of gangliosides in a melanoma cell line. Cancer Sci. 101, 2039–2047 (2010). https://doi.org/10.1111/j.1349-7006.2010.01613.x

    Article  CAS  PubMed  Google Scholar 

  81. Ono, M., Handa, K., Sonnino, S., Withers, D.A., Nagai, H., Hakomori, S.: GM3 ganglioside inhibits CD9-facilitated haptotactic cell motility: coexpression of GM3 and CD9 is essential in the downregulation of tumor cell motility and malignancy. Biochemistry. 40, 6414–6421 (2001). doi:https://doi.org/10.1021/bi0101998

    Article  CAS  PubMed  Google Scholar 

  82. Hamamura, K., Tsuji, M., Hotta, H., Ohkawa, Y., Takahashi, M., Shibuya, H., Nakashima, H., Yamauchi, Y., Hashimoto, N., Hattori, H., Ueda, M., Furukawa, K., Furukawa, K.: Functional activation of Src family kinase yes protein is essential for the enhanced malignant properties of human melanoma cells expressing ganglioside GD3. J. Biol. Chem. 286, 18526–18537 (2011). https://doi.org/10.1074/jbc.M110.164798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Ohmi, Y., Kambe, M., Ohkawa, Y., Hamamura, K., Tajima, O., Takeuchi, R., Furukawa, K., Furukawa, K.: Differential roles of gangliosides in malignant properties of melanomas. PLoS One. 13, e0206881 (2018). https://doi.org/10.1371/journal.pone.0206881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ohkawa, Y., Zhang, P., Momota, H., Kato, A., Hashimoto, N., Ohmi, Y., Bhuiyan, R.H., Farhana, Y., Natsume, A., Wakabayashi, T., Furukawa, K., Furukawa, K.: Lack of GD3 synthase (St8sia1) attenuates malignant properties of gliomas in genetically engineered mouse model. Cancer Sci. 112, 3756–3768 (2021). https://doi.org/10.1111/cas.15032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Zhang, P., Ohkawa, Y., Yamamoto, S., Momota, H., Kato, A., Kaneko, K., Natsume, A., Yesmin, F., Ohmi, Y., Okajima, T., Wakabayashi, T., Furukawa, K., Furukawa, K.: St8sia1-deficiency in mice alters tumor environments of gliomas, leading to reduced disease severity. Nagoya J. Med. Sci. 83, 535–549 (2021). https://doi.org/10.18999/nagjms.83.3.535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Groux-Degroote, S., Guérardel, Y., Delannoy, P.: Gangliosides: Structures, Biosynthesis, Analysis, and Roles in Cancer. Chembiochem. 18, 1146–1154 (2017). https://doi.org/10.1002/cbic.201600705

    Article  CAS  PubMed  Google Scholar 

  87. Simons, K., Ikonen, E.: Functional rafts in cell membranes. Nature. 387, 569–572 (1997). https://doi.org/10.1038/42408

    Article  CAS  PubMed  Google Scholar 

  88. Hakomori, S.I.: Glycosynaptic microdomains controlling tumor cell phenotype through alteration of cell growth, adhesion, and motility. FEBS Lett. 584, 1901–1906 (2010). https://doi.org/10.1016/j.febslet.2009.10.065

    Article  CAS  PubMed  Google Scholar 

  89. Simons, K., Toomre, D.: Lipid rafts and signal transduction. Nat. Rev. Mol. Cell. Biol. 1, 31–39 (2000). https://doi.org/10.1038/35036052

    Article  CAS  PubMed  Google Scholar 

  90. Hakomori, S.I., Handa, K.: GM3 and cancer. Glycoconj. J. 32, 1–8 (2015). https://doi.org/10.1007/s10719-014-9572-4

    Article  CAS  PubMed  Google Scholar 

  91. Simons, K., Gerl, M.J.: Revitalizing membrane rafts: new tools and insights. Nat. Rev. Mol. Cell. Biol. 11, 688–699 (2010). https://doi.org/10.1038/nrm2977

    Article  CAS  PubMed  Google Scholar 

  92. Komura, N., Suzuki, K.G., Ando, H., Konishi, M., Koikeda, M., Imamura, A., Chadda, R., Fujiwara, T.K., Tsuboi, H., Sheng, R., Cho, W., Furukawa, K., Furukawa, K., Yamauchi, Y., Ishida, H., Kusumi, A., Kiso, M.: Raft-based interactions of gangliosides with a GPI-anchored receptor. Nat. Chem. Biol. 12, 402–410 (2016). https://doi.org/10.1038/nchembio.2059

    Article  CAS  PubMed  Google Scholar 

  93. Yesmin, F., Bhuiyan, R.H., Ohmi, Y., Yamamoto, S., Kaneko, K., Ohkawa, Y., Zhang, P., Hamamura, K., Cheung, N.-K.V., Kotani, N., Honke, K., Okajima, T., Kambe, M., Tajima, O., Furukawa, K., Furukawa, K.: Ganglioside GD2 enhances malignant phenotypes of melanoma cells by co-operating with integrins. Int. J. Mol. Sci. 23, 423 (2021). https://doi.org/10.3390/ijms23010423

  94. Furukawa, K., Ohmi, Y., Kondo, Y., Ohkawa, Y., Hashimoto, N., Tajima, O., Furukawa, K.: The role of glycosphingolipifds. Lessons from knockout mice. In: Sillence, D. (ed.) Lipid Rafts. Properties, controversies and roles in signal transduction, pp. 1–20. Nova Publishers, New York (2014)

    Google Scholar 

  95. Sonnino, S., Prinetti, A.: Gangliosides as regulators of cell membrane organization and functions. Adv. Exp. Med. Biol. 688, 165–184 (2010). doi:https://doi.org/10.1007/978-1-4419-6741-1_12

    Article  CAS  PubMed  Google Scholar 

  96. Kotani, N., Gu, J., Isaji, T., Udaka, K., Taniguchi, N., Honke, K.: Biochemical visualization of cell surface molecular clustering in living cells. Proc. Natl. Acad. Sci. U.S.A. 105, 7405–7409: (2008). https://doi.org/10.1073/pnas.0710346105

  97. Hashimoto, N., Hamamura, K., Kotani, N., Furukawa, K., Kaneko, K., Honke, K., Furukawa, K.: Proteomic analysis of ganglioside-associated membrane molecules: substantial basis for molecular clustering. Proteomics. 12, 3154–3163 (2012). https://doi.org/10.1002/pmic.201200279

    Article  CAS  PubMed  Google Scholar 

  98. Kaneko, K., Ohkawa, Y., Hashimoto, N., Ohmi, Y., Kotani, N., Honke, K., Ogawa, M., Okajima, T., Furukawa, K., Furukawa, K.: Neogenin, Defined as a GD3-associated Molecule by Enzyme-mediated Activation of Radical Sources, Confers Malignant Properties via Intracytoplasmic Domain in Melanoma Cells. J. Biol. Chem. 291, 16630–16643 (2016). https://doi.org/10.1074/jbc.M115.708834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Ohkawa, Y., Momota, H., Kato, A., Hashimoto, N., Tsuda, Y., Kotani, N., Honke, K., Suzumura, A., Furukawa, K., Ohmi, Y., Natsume, A., Wakabayashi, T., Furukawa, K.: Ganglioside GD3 Enhances Invasiveness of Gliomas by Forming a Complex with Platelet-derived Growth Factor Receptor α and Yes Kinase. J. Biol. Chem. 290, 16043–16058 (2015). https://doi.org/10.1074/jbc.M114.635755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Esaki, N., Ohkawa, Y., Hashimoto, N., Tsuda, Y., Ohmi, Y., Bhuiyan, R.H., Kotani, N., Honke, K., Enomoto, A., Takahashi, M., Furukawa, K., Furukawa, K.: ASC amino acid transporter 2, defined by enzyme-mediated activation of radical sources, enhances malignancy of GD2-positive small-cell lung cancer. Cancer Sci. 109, 141–153 (2018)

    Article  CAS  Google Scholar 

  101. Irie, R.F., Ollila, D.W., O’Day, S., Morton, D.L.: Phase I pilot clinical trial of human IgM monoclonal antibody to gangliosideGM3 in patients with metastatic melanoma. Cancer Immunol. Immunother. 53, 110–117 (2004). https://doi.org/10.1007/s00262-003-0436-1

    Article  CAS  PubMed  Google Scholar 

  102. Becker, J.C., Varki, N., Gillies, S.D., Furukawa, K., Reisfeld, R.A.: An antibody-interleukin 2 fusion protein overcomes tumor heterogeneity by induction of a cellular immune response. Proc. Natl. Acad. Sci. U S A. 93, 7826–7831 (1996). doi:https://doi.org/10.1073/pnas.93.15.7826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Kushner, B.H., Ostrovnaya, I., Cheung, I.Y., Kuk, D., Kramer, K., Modak, S., Yataghene, K., Cheung, N.K.: Prolonged progression-free survival after consolidating second or later remissions of neuroblastoma with Anti-G(D2) immunotherapy and isotretinoin: a prospective Phase II study. Oncoimmunology. 4, e1016704 (2015). https://doi.org/10.1080/2162402X.2015.1016704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Yu, J., Hung, J.T., Wang, S.H., Cheng, J.Y., Yu, A.L.: Targeting glyco-sphingolipids for cancer immunotherapy. FEBS Lett. 594, 3602–3618 (2020). doi:https://doi.org/10.1002/1873-3468.13917

    Article  CAS  PubMed  Google Scholar 

  105. Harel, W., Shau, H., Hadley, C.G., Morgan, A.C. Jr., Reisfeld, R.,A., Cheresh, D.A., Mitchell, M.S.: Increased lysis of melanoma by in vivo-elicited human lymphokine-activated killer cells after addition of antiganglioside antibodies in vitro. Cancer Res. 50, 6311–6315 (1990)

    CAS  PubMed  Google Scholar 

  106. McLaughlin, P., Grillo-López, A.J., Link, B.K., Levy, R., Czuczman, M.S., Williams, M.E., Heyman, M.R., Bence-Bruckler, I., White, C.A., Cabanillas, F., Jain, V., Ho, A.D., Lister, J., Wey, K., Shen, D., Dallaire, B.K.: Rituximab chimeric anti-CD20 monoclonal antibody therapy for relapsed indolent lymphoma: half of patients respond to a four-dose treatment program. J. Clin. Oncol. 16, 2825–2833 (1998)

    Article  CAS  Google Scholar 

  107. Furukawa, K., Hamamura, K., Aixinjueluo, W., Furukawa, K.: Biosignals modulated by tumor-associated carbohydrate antigens: novel targets for cancer therapy. Ann. NY Acad. Sci. 1086, 185–198 (2006). https://doi.org/10.1196/annals.1377.017

    Article  CAS  PubMed  Google Scholar 

  108. Ko, K., Furukawa, K., Takahashi, T., Urano, T., Sanai, Y., Nagino, M., Nimura, Y., Furukawa, K.: Fundamental study of small interfering RNAs for ganglioside GD3 synthase gene as a therapeutic target of lung cancers. Oncogene. 25, 6924–6935 (2006). https://doi.org/10.1038/sj.onc.1209683

    Article  CAS  PubMed  Google Scholar 

  109. Makino, Y., Hamamura, K., Takei, Y., Buiyan, R.H., Ohkawa, Y., Ohmi, Y., Nakashima, H., Furukawa, K., Furukawa, K.: A therapeutic trial of human melanomas with combined small interfering RNAs targeting adaptor molecules p130Cas and paxillin activated under expression of ganglioside GD3. Biochim. Biophys. Acta. 1860, 1753–1763 (2016). https://doi.org/10.1016/j.bbagen.2016.04.005

    Article  CAS  PubMed  Google Scholar 

  110. Furukawa, K., Hamamura, K., Nakashima, H., Furukawa, K.: Molecules in the signaling pathway activated by gangliosides can be targets of therapeutics for malignant melanomas. Proteomics. 8, 3312–3316 (2008). https://doi.org/10.1002/pmic.200800228

    Article  CAS  PubMed  Google Scholar 

  111. Furukawa, K., Ohmi, Y., Ohkawa, Y., Bhuiyan, R.H., Zhang, P., Tajima, O., Hashimoto, N., Hamamura, K., Furukawa, K.: New era of research on cancer-associated glycosphingolipids. Cancer Sci. 110, 1544–1551 (2019). https://doi.org/10.1111/cas.14005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Brignole, C., Pagnan, G., Marimpietri, D., Cosimo, E., Allen, T.M., Ponzoni, M., Pastorino, F.: Targeted delivery system for antisense oligonucleotides: a novel experimental strategy for neuroblastoma treatment. Cancer Lett. 197, 231–235 (2003). doi:https://doi.org/10.1016/s0304-3835(03)00107-1

    Article  CAS  PubMed  Google Scholar 

  113. Prigione, I., Corrias, M.V., Airoldi, I., Raffaghello, L., Morandi, F., Bocca, P., Cocco, C., Ferrone, S., Pistoia, V.: Immunogenicity of human neuroblastoma. Ann. N Y Acad. Sci. 1028, 69–80 (2004). doi:https://doi.org/10.1196/annals.1322.008

    Article  CAS  PubMed  Google Scholar 

  114. Mount, C.W., Majzner, R.G., Sundaresh, S., Arnold, E.P., Kadapakkam, M., Haile, S., Labanieh, L., Hulleman, E., Woo, P.J., Rietberg, S.P., Vogel, H., Monje, M., Mackall, C.L.: Potent antitumor efficacy of anti-GD2 CAR T cells in H3-K27M+ diffuse midline gliomas. Nat. Med. 24, 572–579 (2018). doi:https://doi.org/10.1038/s41591-018-0006-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Ms S. Yamamoto, Y. Kitaura, T. Ito, and Y. Imao for excellent technical assistance. We also thank Ms M. Kojima for a nice secretarial help. This study was supported by Grants-in-Aids from the Ministry of Education, Culture, Sports and Technology of Japan (MEXT)(18H02628, 19K07393, 19K22518, 21K06828, 21H02699) and by JST-CREST (Grant Number: JPMJCR17H2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koichi Furukawa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Furukawa, K., Ohmi, Y., Hamamura, K. et al. Signaling domains of cancer-associated glycolipids. Glycoconj J 39, 145–155 (2022). https://doi.org/10.1007/s10719-022-10051-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-022-10051-1

Keywords

Navigation