Skip to main content
Log in

Heparan sulfate S-domains and extracellular sulfatases (Sulfs): their possible roles in protein aggregation diseases

  • Mini-Review
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Highly sulfated domains of heparan sulfate (HS), also known as HS S-domains, consist of repeated trisulfated disaccharide units [iduronic acid (2S)-glucosamine (NS, 6S)–]. The expression of HS S-domains at the cell surface is determined by two mechanisms: tightly regulated biosynthetic machinery and enzymatic remodeling by extracellular endoglucosamine 6-sulfatases, Sulf-1 and Sulf-2. Intracellular or extracellular deposits of misfolded and aggregated proteins are characteristic of protein aggregation diseases. Although proteins can aggregate alone, deposits of protein aggregates in vivo contain a number of proteinaceous and non-protein components. HS S-domains are one non-protein component of these aggregated deposits. HS S-domains are considered to be critical for signal transduction of several growth factors and several disease conditions, such as tumor progression, but their roles in protein aggregation diseases are not yet fully understood. This review summarizes the current understanding of the possible roles of HS S-domains and Sulfs in the formation and cytotoxicity of protein aggregates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Sulfs post-synthetically remodel HS at the cell surface.
Fig. 2: HS S-domains mediate the interactions of protein aggregates with cells.
Fig. 3: Possible model of the role of HS S-domains in protein aggregation processes.

Similar content being viewed by others

Abbreviations

Aβ:

Amyloid β protein

HS:

Heparan sulfate

GAG:

Glycosaminoglycan

AD:

Alzheimer’s disease

AA:

Amyloid A

SAA:

Serum amyloid protein A

AL:

Amyloid immunoglobulin light chain

β2-m:

β2-microglobulin

ATTR:

Amyloid transthyretin

IAPP:

Islet amyloid polypeptide

HSPG:

Heparan sulfate proteoglycan

GlcNAc:

N-acetylglucosamine

GlcA:

Glucuronic acid

IdoA:

Iduronic acid

FGF:

Fibroblast growth factor

VEGF:

Vascular endothelial growth factor

GDNF:

Glial cell line-derived neurotrophic factor

apoA-I:

Apolipoprotein A-I

References

  1. Dobson, C.M.: Protein misfolding, evolution and disease. Trends Biochem. Sci. 24(9), 329–332 (1999)

    Article  CAS  PubMed  Google Scholar 

  2. Tan, S.Y., Pepys, M.B.: Amyloidosis. Histopathology. 25(5), 403–414 (1994)

    Article  CAS  PubMed  Google Scholar 

  3. Kelly, J.W.: The alternative conformations of amyloidogenic proteins and their multi-step assembly pathways. Curr. Opin. Struct. Biol. 8(1), 101–106 (1998)

    Article  CAS  PubMed  Google Scholar 

  4. Lansbury Jr., P.T.: Evolution of amyloid: what normal protein folding may tell us about fibrillogenesis and disease. Proc. Natl. Acad. Sci. U. S. A. 96(7), 3342–3344 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chiti, F., Dobson, C.M.: Protein misfolding, functional amyloid, and human disease. Annu. Rev. Biochem. 75, 333–366 (2006)

    Article  CAS  PubMed  Google Scholar 

  6. Perutz, M.F.: Glutamine repeats and neurodegenerative diseases: molecular aspects. Trends Biochem. Sci. 24(2), 58–63 (1999)

    Article  CAS  PubMed  Google Scholar 

  7. Nasr, S.H., Dasari, S., Hasadsri, L., Theis, J.D., Vrana, J.A., Gertz, M.A., Muppa, P., Zimmermann, M.T., Grogg, K.L., Dispenzieri, A., Sethi, S., Highsmith Jr., W.E., Merlini, G., Leung, N., Kurtin, P.J.: Novel type of renal amyloidosis derived from apolipoprotein-CII. J. Am. Soc. Nephrol. 28(2), 439–445 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  8. Valleix, S., Verona, G., Jourde-Chiche, N., Nedelec, B., Mangione, P.P., Bridoux, F., Mange, A., Dogan, A., Goujon, J.M., Lhomme, M., Dauteuille, C., Chabert, M., Porcari, R., Waudby, C.A., Relini, A., Talmud, P.J., Kovrov, O., Olivecrona, G., Stoppini, M., Christodoulou, J., Hawkins, P.N., Grateau, G., Delpech, M., Kontush, A., Gillmore, J.D., Kalopissis, A.D., Bellotti, V.: D25V apolipoprotein C-III variant causes dominant hereditary systemic amyloidosis and confers cardiovascular protective lipoprotein profile. Nat. Commun. 7, 10353 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Virchow, R.: Zur cellulosefrage. Virchows Arch. Pathol. Anat. Physiol. 6, 416–426 (1854)

    Article  Google Scholar 

  10. Friedrich, N., Kekule, A.: Zur amyloidfrage. Virchows Arch. Pathol. Anat. Physiol. 16, 50–65 (1859)

    Article  Google Scholar 

  11. Eanes, E.D., Glenner, G.G.: X-ray diffraction studies on amyloid filaments. J. Histochem. Cytochem. 16(11), 673–677 (1968)

    Article  CAS  PubMed  Google Scholar 

  12. Astbury, W.T., Dickinson, S., Bailey, K.: The X-ray interpretation of denaturation and the structure of the seed globulins. Biochem. J. 29(10), 2351–2360 (1935)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Snow, A.D., Kisilevsky, R.: Temporal relationship between glycosaminoglycan accumulation and amyloid deposition during experimental amyloidosis. A histochemical study. Lab. Investig. 53(1), 37–44 (1985)

    CAS  PubMed  Google Scholar 

  14. Snow, A.D., Kisilevsky, R., Stephens, C., Anastassiades, T.: Characterization of tissue and plasma glycosaminoglycans during experimental AA amyloidosis and acute inflammation. Qualitative and quantitative analysis. Lab. Investig. 56(6), 665–675 (1987)

    CAS  PubMed  Google Scholar 

  15. Snow, A.D., Willmer, J., Kisilevsky, R.: Sulfated glycosaminoglycans: a common constituent of all amyloids? Lab. Investig. 56(1), 120–123 (1987)

    CAS  PubMed  Google Scholar 

  16. Snow, A.D., Willmer, J.P., Kisilevsky, R.: Sulfated glycosaminoglycans in Alzheimer's disease. Hum. Pathol. 18(5), 506–510 (1987)

    Article  CAS  PubMed  Google Scholar 

  17. Ohishi, H., Skinner, M., Sato-Araki, N., Okuyama, T., Gejyo, F., Kimura, A., Cohen, A.S., Schmid, K.: Glycosaminoglycans of the hemodialysis-associated carpal synovial amyloid and of amyloid-rich tissues and fibrils of heart, liver, and spleen. Clin. Chem. 36(1), 88–91 (1990)

    CAS  PubMed  Google Scholar 

  18. Linker, A., Carney, H.C.: Presence and role of glycosaminoglycans in amyloidosis. Lab. Investig. 57(3), 297–305 (1987)

    CAS  PubMed  Google Scholar 

  19. Lyon, A.W., Narindrasorasak, S., Young, I.D., Anastassiades, T., Couchman, J.R., McCarthy, K.J., Kisilevsky, R.: Co-deposition of basement membrane components during the induction of murine splenic AA amyloid. Lab. Investig. 64(6), 785–790 (1991)

    CAS  PubMed  Google Scholar 

  20. Young, I.D., Willmer, J.P., Kisilevsky, R.: The ultrastructural localization of sulfated proteoglycans is identical in the amyloids of Alzheimer's disease and AA, AL, senile cardiac and medullary carcinoma-associated amyloidosis. Acta Neuropathol. 78(2), 202–209 (1989)

    Article  CAS  PubMed  Google Scholar 

  21. Young, I.D., Ailles, L., Narindrasorasak, S., Tan, R., Kisilevsky, R.: Localization of the basement membrane heparan sulfate proteoglycan in islet amyloid deposits in type II diabetes mellitus. Arch. Pathol. Lab. Med. 116(9), 951–954 (1992)

    CAS  PubMed  Google Scholar 

  22. Ailles, L., Kisilevsky, R., Young, I.D.: Induction of perlecan gene expression precedes amyloid formation during experimental murine AA amyloidogenesis. Lab. Investig. 69(4), 443–448 (1993)

    CAS  PubMed  Google Scholar 

  23. Woodrow, S.I., Stewart, R.J., Kisilevsky, R., Gore, J., Young, I.D.: Experimental AA amyloidogenesis is associated with differential expression of extracellular matrix genes. Amyloid. 6(1), 22–30 (1999)

    Article  CAS  PubMed  Google Scholar 

  24. Kolset, S.O., Pejler, G.: Serglycin: a structural and functional chameleon with wide impact on immune cells. J. Immunol. 187(10), 4927–4933 (2011)

    Article  CAS  PubMed  Google Scholar 

  25. Lehri-Boufala, S., Ouidja, M.O., Barbier-Chassefiere, V., Henault, E., Raisman-Vozari, R., Garrigue-Antar, L., Papy-Garcia, D., Morin, C.: New roles of glycosaminoglycans in alpha-synuclein aggregation in a cellular model of Parkinson disease. PLoS One. 10(1), e0116641 (2015)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Bernfield, M., Gotte, M., Park, P.W., Reizes, O., Fitzgerald, M.L., Lincecum, J., Zako, M.: Functions of cell surface heparan sulfate proteoglycans. Annu. Rev. Biochem. 68, 729–777 (1999)

    Article  CAS  PubMed  Google Scholar 

  27. O'Callaghan, P., Sandwall, E., Li, J.P., Yu, H., Ravid, R., Guan, Z.Z., van Kuppevelt, T.H., Nilsson, L.N., Ingelsson, M., Hyman, B.T., Kalimo, H., Lindahl, U., Lannfelt, L., Zhang, X.: Heparan sulfate accumulation with Abeta deposits in Alzheimer's disease and Tg2576 mice is contributed by glial cells. Brain Pathol. 18(4), 548–561 (2008)

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Scholefield, Z., Yates, E.A., Wayne, G., Amour, A., McDowell, W., Turnbull, J.E.: Heparan sulfate regulates amyloid precursor protein processing by BACE1, the Alzheimer's beta-secretase. J. Cell Biol. 163(1), 97–107 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Iozzo, R.V.: Basement membrane proteoglycans: from cellar to ceiling. Nat. Rev. Mol. Cell Biol. 6(8), 646–656 (2005)

    Article  CAS  PubMed  Google Scholar 

  30. Castillo, G.M., Ngo, C., Cummings, J., Wight, T.N., Snow, A.D.: Perlecan binds to the beta-amyloid proteins (A beta) of Alzheimer's disease, accelerates A beta fibril formation, and maintains A beta fibril stability. J. Neurochem. 69(6), 2452–2465 (1997)

    Article  CAS  PubMed  Google Scholar 

  31. Timmer, N.M., van Horssen, J., Otte-Holler, I., Wilhelmus, M.M., David, G., van Beers, J., de Waal, R.M., Verbeek, M.M.: Amyloid beta induces cellular relocalization and production of agrin and glypican-1. Brain Res. 1260, 38–46 (2009)

    Article  CAS  PubMed  Google Scholar 

  32. Wien, T.N., Sorby, R., Omtvedt, L.A., Landsverk, T., Husby, G.: Kinetics of glycosaminoglycan deposition in splenic AA amyloidosis induced in mink. Scand. J. Immunol. 60(6), 600–608 (2004)

    Article  CAS  PubMed  Google Scholar 

  33. Liu, I.H., Uversky, V.N., Munishkina, L.A., Fink, A.L., Halfter, W., Cole, G.J.: Agrin binds alpha-synuclein and modulates alpha-synuclein fibrillation. Glycobiology. 15(12), 1320–1331 (2005)

    Article  CAS  PubMed  Google Scholar 

  34. Esko, J.D., Lindahl, U.: Molecular diversity of heparan sulfate. J. Clin. Invest. 108(2), 169–173 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kusche-Gullberg, M.: Sulfotransferases in glycosaminoglycan biosynthesis. Curr. Opin. Struct. Biol. 13(5), 605–611 (2003)

    Article  CAS  PubMed  Google Scholar 

  36. Rosen, S.D., Lemjabbar-Alaoui, H.: Sulf-2: an extracellular modulator of cell signaling and a cancer target candidate. Expert Opin. Ther. Targets. 14(9), 935–949 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bishop, J.R., Schuksz, M., Esko, J.D.: Heparan sulphate proteoglycans fine-tune mammalian physiology. Nature. 446(7139), 1030–1037 (2007)

    Article  CAS  PubMed  Google Scholar 

  38. Gallagher, J.T.: Heparan sulfate: growth control with a restricted sequence menu. J. Clin. Invest. 108(3), 357–361 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Turnbull, J.E., Gallagher, J.T.: Distribution of iduronate 2-sulphate residues in heparan sulphate. Evidence for an ordered polymeric structure. Biochem. J. 273(Pt 3), 553–559 (1991)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Morimoto-Tomita, M., Uchimura, K., Werb, Z., Hemmerich, S., Rosen, S.D.: Cloning and characterization of two extracellular heparin-degrading endosulfatases in mice and humans. J. Biol. Chem. 277(51), 49175–49185 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Dennissen, M.A., Jenniskens, G.J., Pieffers, M., Versteeg, E.M., Petitou, M., Veerkamp, J.H., van Kuppevelt, T.H.: Large, tissue-regulated domain diversity of heparan sulfates demonstrated by phage display antibodies. J. Biol. Chem. 277(13), 10982–10986 (2002)

    Article  CAS  PubMed  Google Scholar 

  42. Jenniskens, G.J., Oosterhof, A., Brandwijk, R., Veerkamp, J.H., van Kuppevelt, T.H.: Heparan sulfate heterogeneity in skeletal muscle basal lamina: demonstration by phage display-derived antibodies. J. Neurosci. 20(11), 4099–4111 (2000)

    Article  CAS  PubMed  Google Scholar 

  43. Hossain, M.M., Hosono-Fukao, T., Tang, R., Sugaya, N., van Kuppevelt, T.H., Jenniskens, G.J., Kimata, K., Rosen, S.D., Uchimura, K.: Direct detection of HSulf-1 and HSulf-2 activities on extracellular heparan sulfate and their inhibition by PI-88. Glycobiology. 20(2), 175–186 (2010)

    Article  CAS  PubMed  Google Scholar 

  44. Dhoot, G.K., Gustafsson, M.K., Ai, X., Sun, W., Standiford, D.M., Emerson Jr., C.P.: Regulation of Wnt signaling and embryo patterning by an extracellular sulfatase. Science. 293(5535), 1663–1666 (2001)

    Article  CAS  PubMed  Google Scholar 

  45. Ohto, T., Uchida, H., Yamazaki, H., Keino-Masu, K., Matsui, A., Masu, M.: Identification of a novel nonlysosomal sulphatase expressed in the floor plate, choroid plexus and cartilage. Genes Cells. 7(2), 173–185 (2002)

    Article  CAS  PubMed  Google Scholar 

  46. Tang, R., Rosen, S.D.: Functional consequences of the subdomain organization of the sulfs. J. Biol. Chem. 284(32), 21505–21514 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Frese, M.A., Milz, F., Dick, M., Lamanna, W.C., Dierks, T.: Characterization of the human sulfatase Sulf1 and its high affinity heparin/heparan sulfate interaction domain. J. Biol. Chem. 284(41), 28033–28044 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Nagamine, S., Keino-Masu, K., Shiomi, K., Masu, M.: Proteolytic cleavage of the rat heparan sulfate 6-O-endosulfatase SulfFP2 by furin-type proprotein convertases. Biochem. Biophys. Res. Commun. 391(1), 107–112 (2010)

    Article  CAS  PubMed  Google Scholar 

  49. Ai, X., Do, A.T., Lozynska, O., Kusche-Gullberg, M., Lindahl, U., Emerson Jr., C.P.: QSulf1 remodels the 6-O sulfation states of cell surface heparan sulfate proteoglycans to promote Wnt signaling. J. Cell Biol. 162(2), 341–351 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ai, X., Kitazawa, T., Do, A.T., Kusche-Gullberg, M., Labosky, P.A., Emerson Jr., C.P.: SULF1 and SULF2 regulate heparan sulfate-mediated GDNF signaling for esophageal innervation. Development. 134(18), 3327–3338 (2007)

    Article  CAS  PubMed  Google Scholar 

  51. Uchimura, K., Morimoto-Tomita, M., Bistrup, A., Li, J., Lyon, M., Gallagher, J., Werb, Z., Rosen, S.D.: HSulf-2, an extracellular endoglucosamine-6-sulfatase, selectively mobilizes heparin-bound growth factors and chemokines: effects on VEGF, FGF-1, and SDF-1. BMC Biochem. 7, 2 (2006)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Viviano, B.L., Paine-Saunders, S., Gasiunas, N., Gallagher, J., Saunders, S.: Domain-specific modification of heparan sulfate by Qsulf1 modulates the binding of the bone morphogenetic protein antagonist Noggin. J. Biol. Chem. 279(7), 5604–5611 (2004)

    Article  CAS  PubMed  Google Scholar 

  53. Mahley, R.W., Huang, Y.: Atherogenic remnant lipoproteins: role for proteoglycans in trapping, transferring, and internalizing. J. Clin. Invest. 117(1), 94–98 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. MacArthur, J.M., Bishop, J.R., Stanford, K.I., Wang, L., Bensadoun, A., Witztum, J.L., Esko, J.D.: Liver heparan sulfate proteoglycans mediate clearance of triglyceride-rich lipoproteins independently of LDL receptor family members. J. Clin. Invest. 117(1), 153–164 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gustafsen, C., Olsen, D., Vilstrup, J., Lund, S., Reinhardt, A., Wellner, N., Larsen, T., Andersen, C.B.F., Weyer, K., Li, J.P., Seeberger, P.H., Thirup, S., Madsen, P., Glerup, S.: Heparan sulfate proteoglycans present PCSK9 to the LDL receptor. Nat. Commun. 8(1), 503 (2017)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Hosono-Fukao, T., Ohtake-Niimi, S., Nishitsuji, K., Hossain, M.M., van Kuppevelt, T.H., Michikawa, M., Uchimura, K.: RB4CD12 epitope expression and heparan sulfate disaccharide composition in brain vasculature. J. Neurosci. Res. 89(11), 1840–1848 (2011)

    Article  CAS  PubMed  Google Scholar 

  57. Bruinsma, I.B., te Riet, L., Gevers, T., ten Dam, G.B., van Kuppevelt, T.H., David, G., Kusters, B., de Waal, R.M., Verbeek, M.M.: Sulfation of heparan sulfate associated with amyloid-beta plaques in patients with Alzheimer's disease. Acta Neuropathol. 119(2), 211–220 (2010)

    Article  CAS  PubMed  Google Scholar 

  58. Hosono-Fukao, T., Ohtake-Niimi, S., Hoshino, H., Britschgi, M., Akatsu, H., Hossain, M.M., Nishitsuji, K., van Kuppevelt, T.H., Kimata, K., Michikawa, M., Wyss-Coray, T., Uchimura, K.: Heparan sulfate subdomains that are degraded by Sulf accumulate in cerebral amyloid β plaques of Alzheimer’s disease: evidence from mouse models and patients. Am. J. Pathol. 180(5), 2056–2067 (2012)

    Article  CAS  PubMed  Google Scholar 

  59. Sepulveda-Diaz, J.E., Alavi Naini, S.M., Huynh, M.B., Ouidja, M.O., Yanicostas, C., Chantepie, S., Villares, J., Lamari, F., Jospin, E., van Kuppevelt, T.H., Mensah-Nyagan, A.G., Raisman-Vozari, R., Soussi-Yanicostas, N., Papy-Garcia, D.: HS3ST2 expression is critical for the abnormal phosphorylation of tau in Alzheimer's disease-related tau pathology. Brain. 138(Pt 5), 1339–1354 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  60. Roberts, R.O., Kang, Y.N., Hu, C., Moser, C.D., Wang, S., Moore, M.J., Graham, R.P., Lai, J.-P., Petersen, R.C., Roberts, L.R.: Decreased expression of sulfatase 2 in the brains of Alzheimer’s disease patients: implications for regulation of neuronal cell signaling. J. Alzheimers Dis. Rep. 1(1), 115–124 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  61. Nagamine, S., Tamba, M., Ishimine, H., Araki, K., Shiomi, K., Okada, T., Ohto, T., Kunita, S., Takahashi, S., Wismans, R.G., van Kuppevelt, T.H., Masu, M., Keino-Masu, K.: Organ-specific sulfation patterns of heparan sulfate generated by extracellular sulfatases Sulf1 and Sulf2 in mice. J. Biol. Chem. 287(12), 9579–9590 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Paris, D., Ganey, N., Banasiak, M., Laporte, V., Patel, N., Mullan, M., Murphy, S.F., Yee, G.T., Bachmeier, C., Ganey, C., Beaulieu-Abdelahad, D., Mathura, V.S., Brem, S., Mullan, M.: Impaired orthotopic glioma growth and vascularization in transgenic mouse models of Alzheimer's disease. J. Neurosci. 30(34), 11251–11258 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kalaria, R.N., Cohen, D.L., Premkumar, D.R., Nag, S., LaManna, J.C., Lust, W.D.: Vascular endothelial growth factor in Alzheimer's disease and experimental cerebral ischemia. Brain Res. Mol. Brain Res. 62(1), 101–105 (1998)

    Article  CAS  PubMed  Google Scholar 

  64. Tarkowski, E., Issa, R., Sjogren, M., Wallin, A., Blennow, K., Tarkowski, A., Kumar, P.: Increased intrathecal levels of the angiogenic factors VEGF and TGF-beta in Alzheimer's disease and vascular dementia. Neurobiol. Aging. 23(2), 237–243 (2002)

    Article  CAS  PubMed  Google Scholar 

  65. Morimoto-Tomita, M., Uchimura, K., Bistrup, A., Lum, D.H., Egeblad, M., Boudreau, N., Werb, Z., Rosen, S.D.: Sulf-2, a proangiogenic heparan sulfate endosulfatase, is upregulated in breast cancer. Neoplasia. 7(11), 1001–1010 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ryu, J.K., Cho, T., Choi, H.B., Wang, Y.T., McLarnon, J.G.: Microglial VEGF receptor response is an integral chemotactic component in Alzheimer's disease pathology. J. Neurosci. 29(1), 3–13 (2009)

    Article  CAS  PubMed  Google Scholar 

  67. Zlokovic, B.V.: Neurovascular mechanisms of Alzheimer's neurodegeneration. Trends Neurosci. 28(4), 202–208 (2005)

    Article  CAS  PubMed  Google Scholar 

  68. Kalus, I., Rohn, S., Puvirajesinghe, T.M., Guimond, S.E., Eyckerman-Kolln, P.J., Ten Dam, G., van Kuppevelt, T.H., Turnbull, J.E., Dierks, T.: Sulf1 and Sulf2 differentially modulate heparan sulfate proteoglycan sulfation during postnatal cerebellum development: evidence for neuroprotective and neurite outgrowth promoting functions. PLoS One. 10(10), e0139853 (2015)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Horonchik, L., Tzaban, S., Ben-Zaken, O., Yedidia, Y., Rouvinski, A., Papy-Garcia, D., Barritault, D., Vlodavsky, I., Taraboulos, A.: Heparan sulfate is a cellular receptor for purified infectious prions. J. Biol. Chem. 280(17), 17062–17067 (2005)

    Article  CAS  PubMed  Google Scholar 

  70. Hijazi, N., Kariv-Inbal, Z., Gasset, M., Gabizon, R.: PrPSc incorporation to cells requires endogenous glycosaminoglycan expression. J. Biol. Chem. 280(17), 17057–17061 (2005)

    Article  CAS  PubMed  Google Scholar 

  71. Shyng, S.L., Lehmann, S., Moulder, K.L., Harris, D.A.: Sulfated glycans stimulate endocytosis of the cellular isoform of the prion protein, PrPC, in cultured cells. J. Biol. Chem. 270(50), 30221–30229 (1995)

    Article  CAS  PubMed  Google Scholar 

  72. Hooper, N.M.: Glypican-1 facilitates prion conversion in lipid rafts. J. Neurochem. 116(5), 721–725 (2011)

    Article  CAS  PubMed  Google Scholar 

  73. Bazar, E., Sheynis, T., Dorosz, J., Jelinek, R.: Heparin inhibits membrane interactions and lipid-induced fibrillation of a prion amyloidogenic determinant. Chembiochem. 12(5), 761–767 (2011)

    Article  CAS  PubMed  Google Scholar 

  74. Kanekiyo, T., Zhang, J., Liu, Q., Liu, C.C., Zhang, L., Bu, G.: Heparan sulphate proteoglycan and the low-density lipoprotein receptor-related protein 1 constitute major pathways for neuronal amyloid-beta uptake. J. Neurosci. 31(5), 1644–1651 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Nishitsuji, K., Hosono, T., Uchimura, K., Michikawa, M.: Lipoprotein lipase is a novel amyloid beta (Abeta)-binding protein that promotes glycosaminoglycan-dependent cellular uptake of Abeta in astrocytes. J. Biol. Chem. 286(8), 6393–6401 (2011)

    Article  CAS  PubMed  Google Scholar 

  76. Timmer, N.M., Schirris, T.J., Bruinsma, I.B., Otte-Holler, I., van Kuppevelt, T.H., de Waal, R.M., Verbeek, M.M.: Aggregation and cytotoxic properties towards cultured cerebrovascular cells of Dutch-mutated Abeta40 (DAbeta(1–40)) are modulated by sulfate moieties of heparin. Neurosci. Res. 66(4), 380–389 (2010)

    Article  CAS  PubMed  Google Scholar 

  77. Bergamaschini, L., Donarini, C., Rossi, E., De Luigi, A., Vergani, C., De Simoni, M.G.: Heparin attenuates cytotoxic and inflammatory activity of Alzheimer amyloid-beta in vitro. Neurobiol. Aging. 23(4), 531–536 (2002)

    Article  CAS  PubMed  Google Scholar 

  78. Holmes, B.B., DeVos, S.L., Kfoury, N., Li, M., Jacks, R., Yanamandra, K., Ouidja, M.O., Brodsky, F.M., Marasa, J., Bagchi, D.P., Kotzbauer, P.T., Miller, T.M., Papy-Garcia, D., Diamond, M.I.: Heparan sulfate proteoglycans mediate internalization and propagation of specific proteopathic seeds. Proc. Natl. Acad. Sci. U. S. A. 110(33), E3138–E3147 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kuwabara, K., Nishitsuji, K., Uchimura, K., Hung, S.C., Mizuguchi, M., Nakajima, H., Mikawa, S., Kobayashi, N., Saito, H., Sakashita, N.: Cellular interaction and cytotoxicity of the Iowa mutation of apolipoprotein A-I (ApoA-IIowa) amyloid mediated by sulfate moieties of heparan sulfate. J. Biol. Chem. 290(40), 24210–24221 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Kameyama, H., Nakajima, H., Nishitsuji, K., Mikawa, S., Uchimura, K., Kobayashi, N., Okuhira, K., Saito, H., Sakashita, N.: Iowa mutant apolipoprotein A-I (ApoA-IIowa) fibrils target lysosomes. Sci. Rep. 6, 30391 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Nishitsuji, K., Saito, H., Uchimura, K.: Enzymatic remodeling of heparan sulfate: a therapeutic strategy for systemic and localized amyloidoses? Neural Regen. Res. 11(3), 408–409 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  82. Burke, K.A., Yates, E.A., Legleiter, J.: Biophysical insights into how surfaces, including lipid membranes, modulate protein aggregation related to neurodegeneration. Front. Neurol. 4, 17 (2013)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Liu, C., Zhang, Y.: Nucleic acid-mediated protein aggregation and assembly. Adv. Protein Chem. Struct. Biol. 84, 1–40 (2011)

    Article  CAS  PubMed  Google Scholar 

  84. Castillo, G.M., Cummings, J.A., Yang, W., Judge, M.E., Sheardown, M.J., Rimvall, K., Hansen, J.B., Snow, A.D.: Sulfate content and specific glycosaminoglycan backbone of perlecan are critical for perlecan's enhancement of islet amyloid polypeptide (amylin) fibril formation. Diabetes. 47(4), 612–620 (1998)

    Article  CAS  PubMed  Google Scholar 

  85. Potter-Perigo, S., Hull, R.L., Tsoi, C., Braun, K.R., Andrikopoulos, S., Teague, J., Bruce Verchere, C., Kahn, S.E., Wight, T.N.: Proteoglycans synthesized and secreted by pancreatic islet beta-cells bind amylin. Arch. Biochem. Biophys. 413(2), 182–190 (2003)

    Article  CAS  PubMed  Google Scholar 

  86. Jha, S., Patil, S.M., Gibson, J., Nelson, C.E., Alder, N.N., Alexandrescu, A.T.: Mechanism of amylin fibrillization enhancement by heparin. J. Biol. Chem. 286(26), 22894–22904 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Aguilera, J.J., Zhang, F., Beaudet, J.M., Linhardt, R.J., Colon, W.: Divergent effect of glycosaminoglycans on the in vitro aggregation of serum amyloid A. Biochimie. 104, 70–80 (2014)

    Article  CAS  PubMed  Google Scholar 

  88. Takase, H., Tanaka, M., Yamamoto, A., Watanabe, S., Takahashi, S., Nadanaka, S., Kitagawa, H., Yamada, T., Mukai, T.: Structural requirements of glycosaminoglycans for facilitating amyloid fibril formation of human serum amyloid A. Amyloid. 23(2), 67–75 (2016)

    Article  CAS  PubMed  Google Scholar 

  89. Ancsin, J.B., Kisilevsky, R.: The heparin/heparan sulfate-binding site on apo-serum amyloid A. Implications for the therapeutic intervention of amyloidosis. J. Biol. Chem. 274(11), 7172–7181 (1999)

    Article  CAS  PubMed  Google Scholar 

  90. Blancas-Mejia, L.M., Hammernik, J., Marin-Argany, M., Ramirez-Alvarado, M.: Differential effects on light chain amyloid formation depend on mutations and type of glycosaminoglycans. J. Biol. Chem. 290(8), 4953–4965 (2015)

    Article  CAS  PubMed  Google Scholar 

  91. Borysik, A.J., Morten, I.J., Radford, S.E., Hewitt, E.W.: Specific glycosaminoglycans promote unseeded amyloid formation from beta2-microglobulin under physiological conditions. Kidney Int. 72(2), 174–181 (2007)

    Article  CAS  PubMed  Google Scholar 

  92. Yamaguchi, I., Suda, H., Tsuzuike, N., Seto, K., Seki, M., Yamaguchi, Y., Hasegawa, K., Takahashi, N., Yamamoto, S., Gejyo, F., Naiki, H.: Glycosaminoglycan and proteoglycan inhibit the depolymerization of beta2-microglobulin amyloid fibrils in vitro. Kidney Int. 64(3), 1080–1088 (2003)

    Article  CAS  PubMed  Google Scholar 

  93. Relini, A., De Stefano, S., Torrassa, S., Cavalleri, O., Rolandi, R., Gliozzi, A., Giorgetti, S., Raimondi, S., Marchese, L., Verga, L., Rossi, A., Stoppini, M., Bellotti, V.: Heparin strongly enhances the formation of beta2-microglobulin amyloid fibrils in the presence of type I collagen. J. Biol. Chem. 283(8), 4912–4920 (2008)

    Article  CAS  PubMed  Google Scholar 

  94. Suk, J.Y., Zhang, F., Balch, W.E., Linhardt, R.J., Kelly, J.W.: Heparin accelerates gelsolin amyloidogenesis. Biochemistry. 45(7), 2234–2242 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Goedert, M., Jakes, R., Spillantini, M.G., Hasegawa, M., Smith, M.J., Crowther, R.A.: Assembly of microtubule-associated protein tau into Alzheimer-like filaments induced by sulphated glycosaminoglycans. Nature. 383(6600), 550–553 (1996)

    Article  CAS  PubMed  Google Scholar 

  96. Hasegawa, M., Crowther, R.A., Jakes, R., Goedert, M.: Alzheimer-like changes in microtubule-associated protein Tau induced by sulfated glycosaminoglycans. Inhibition of microtubule binding, stimulation of phosphorylation, and filament assembly depend on the degree of sulfation. J. Biol. Chem. 272(52), 33118–33124 (1997)

    Article  CAS  PubMed  Google Scholar 

  97. McLaurin, J., Franklin, T., Zhang, X., Deng, J., Fraser, P.E.: Interactions of Alzheimer amyloid-beta peptides with glycosaminoglycans effects on fibril nucleation and growth. Eur. J. Biochem. 266(3), 1101–1110 (1999)

    Article  CAS  PubMed  Google Scholar 

  98. Castillo, G.M., Lukito, W., Wight, T.N., Snow, A.D.: The sulfate moieties of glycosaminoglycans are critical for the enhancement of beta-amyloid protein fibril formation. J. Neurochem. 72(4), 1681–1687 (1999)

    Article  CAS  PubMed  Google Scholar 

  99. Bravo, R., Arimon, M., Valle-Delgado, J.J., Garcia, R., Durany, N., Castel, S., Cruz, M., Ventura, S., Fernandez-Busquets, X.: Sulfated polysaccharides promote the assembly of amyloid beta(1-42) peptide into stable fibrils of reduced cytotoxicity. J. Biol. Chem. 283(47), 32471–32483 (2008)

    Article  CAS  PubMed  Google Scholar 

  100. Cohlberg, J.A., Li, J., Uversky, V.N., Fink, A.L.: Heparin and other glycosaminoglycans stimulate the formation of amyloid fibrils from alpha-synuclein in vitro. Biochemistry. 41(5), 1502–1511 (2002)

    Article  CAS  PubMed  Google Scholar 

  101. Supattapone, S.: Prion protein conversion in vitro. J. Mol. Med. (Berl). 82(6), 348–356 (2004)

    Article  CAS  Google Scholar 

  102. Motamedi-Shad, N., Monsellier, E., Chiti, F.: Amyloid formation by the model protein muscle acylphosphatase is accelerated by heparin and heparan sulphate through a scaffolding-based mechanism. J. Biochem. 146(6), 805–814 (2009)

    Article  CAS  PubMed  Google Scholar 

  103. Motamedi-Shad, N., Monsellier, E., Torrassa, S., Relini, A., Chiti, F.: Kinetic analysis of amyloid formation in the presence of heparan sulfate: faster unfolding and change of pathway. J. Biol. Chem. 284(43), 29921–29934 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Fraser, P.E., Nguyen, J.T., Chin, D.T., Kirschner, D.A.: Effects of sulfate ions on Alzheimer beta/A4 peptide assemblies: implications for amyloid fibril-proteoglycan interactions. J. Neurochem. 59(4), 1531–1540 (1992)

    Article  CAS  PubMed  Google Scholar 

  105. Ellett, L.J., Coleman, B.M., Shambrook, M.C., Johanssen, V.A., Collins, S.J., Masters, C.L., Hill, A.F., Lawson, V.A.: Glycosaminoglycan sulfation determines the biochemical properties of prion protein aggregates. Glycobiology. 25(7), 745–755 (2015)

    Article  CAS  PubMed  Google Scholar 

  106. Valle-Delgado, J.J., Alfonso-Prieto, M., de Groot, N.S., Ventura, S., Samitier, J., Rovira, C., Fernandez-Busquets, X.: Modulation of Abeta42 fibrillogenesis by glycosaminoglycan structure. FASEB J. 24(11), 4250–4261 (2010)

    Article  CAS  PubMed  Google Scholar 

  107. Ren, R., Hong, Z., Gong, H., Laporte, K., Skinner, M., Seldin, D.C., Costello, C.E., Connors, L.H., Trinkaus-Randall, V.: Role of glycosaminoglycan sulfation in the formation of immunoglobulin light chain amyloid oligomers and fibrils. J. Biol. Chem. 285(48), 37672–37682 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Lawson, V.A., Lumicisi, B., Welton, J., Machalek, D., Gouramanis, K., Klemm, H.M., Stewart, J.D., Masters, C.L., Hoke, D.E., Collins, S.J., Hill, A.F.: Glycosaminoglycan sulphation affects the seeded misfolding of a mutant prion protein. PLoS One. 5(8), e12351 (2010)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. McLaurin, J., Fraser, P.E.: Effect of amino-acid substitutions on Alzheimer's amyloid-beta peptide-glycosaminoglycan interactions. Eur. J. Biochem. 267(21), 6353–6361 (2000)

    Article  CAS  PubMed  Google Scholar 

  110. Lindahl, U., Kjellen, L.: Pathophysiology of heparan sulphate: many diseases, few drugs. J. Intern. Med. 273(6), 555–571 (2013)

    Article  CAS  PubMed  Google Scholar 

  111. Dudas, B., Semeniken, K.: Glycosaminoglycans and neuroprotection. Handb. Exp. Pharmacol. (207), 325–343 (2012)

  112. Kisilevsky, R., Lemieux, L.J., Fraser, P.E., Kong, X., Hultin, P.G., Szarek, W.A.: Arresting amyloidosis in vivo using small-molecule anionic sulphonates or sulphates: implications for Alzheimer's disease. Nat. Med. 1(2), 143–148 (1995)

    Article  CAS  PubMed  Google Scholar 

  113. Bergamaschini, L., Rossi, E., Storini, C., Pizzimenti, S., Distaso, M., Perego, C., De Luigi, A., Vergani, C., De Simoni, M.G.: Peripheral treatment with enoxaparin, a low molecular weight heparin, reduces plaques and beta-amyloid accumulation in a mouse model of Alzheimer's disease. J. Neurosci. 24(17), 4181–4186 (2004)

    Article  CAS  PubMed  Google Scholar 

  114. Nishitsuji, K., Uchimura, K.: Sulfated glycosaminoglycans in protein aggregation diseases. Glycoconj. J. 34(4), 453–466 (2017)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author thanks Dr. Kenji Uchimura for critical reading and comments on the manuscript. The author would like to apologize to those whose work could not be directly cited because of space constraints. This work was partly supported by Grants-in-Aid for Young Scientists B-15 K19488 and B-17 K16123 from the Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuchika Nishitsuji.

Ethics declarations

Conflicts of interest

Kazuchika Nishitsuji declares no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nishitsuji, K. Heparan sulfate S-domains and extracellular sulfatases (Sulfs): their possible roles in protein aggregation diseases. Glycoconj J 35, 387–396 (2018). https://doi.org/10.1007/s10719-018-9833-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-018-9833-8

Keywords

Navigation