Skip to main content
Log in

Structure and biological activities of a hexosamine-rich cell wall polysaccharide isolated from the probiotic Lactobacillus farciminis

  • Original Article
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Lactobacillus farciminis CIP 103136 is a bacterial strain with recognized probiotic properties. However, the mechanisms underlying such properties have only been partially elucidated. In this study, we isolated and purified a cell-wall associated polysaccharide (CWPS), and evaluated its biological role in vitro. The structure of CWPS and responses from stimulation of (i) human macrophage-like THP-1 cells, (ii) human embryonal kidney (HEK293) cells stably transfected with Toll-like receptors (TLR2 or TLR4) and (iii) human colonocyte-like T84 intestinal epithelial cells, upon exposure to CWPS were studied. The structure of the purified CWPS from L. farciminis CIP 103136 was analyzed by nuclear magnetic resonance (NMR), MALDI-TOF-TOF MS, and methylation analyses in its native form and following Smith degradation. It was shown to be a novel branched polysaccharide, composed of linear backbone of trisaccharide repeating units of: [→6αGlcpNAc1 → 4βManpNAc1 → 4βGlcpNAc1→] highly substituted with single residues of αGlcp, αGalp and αGlcpNAc. Subsequently, the lack of pro- or anti-inflammatory properties of CWPS was established on macrophage-like THP-1 cells. In addition, CWPS failed to modulate cell signaling pathways dependent of TLR2 and TLR4 in transfected HEK-cells. Finally, in T84 cells, CWPS neither influenced intestinal barrier integrity under basal conditions nor prevented TNF-α/IFN-γ cytokine-mediated epithelium impairment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Hill, C., Guarner, F., Reid, G., Gibson, G.R., Merenstein, D.J., Pot, B., Morelli, L., Canani, R.B., Flint, H.J., Salminen, S., Calder, P.C., Sanders, M.E.: Expert consensus document. The international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 11, 506–514 (2014)

    Article  Google Scholar 

  2. McFarland, L.V.: From yaks to yogurt: the history, development, and current use of probiotics. Clin. Infect. Dis. 60, S85–S90 (2015)

    Article  CAS  PubMed  Google Scholar 

  3. Donato, K.A., Gareau, M.G., Wang, Y.J., Sherman, P.M.: Lactobacillus rhamnosus GG attenuates interferon-gamma and tumour necrosis factor-alpha-induced barrier dysfunction and pro-inflammatory signalling. Microbiology. 156, 3288–3297 (2010)

    Article  CAS  PubMed  Google Scholar 

  4. Wells, J.M.: Immunomodulatory mechanisms of lactobacilli. Microb. Cell Factories. 10, S17 (2011)

    Article  Google Scholar 

  5. Lee, I.C., Tomita, S., Kleerebezem, M., Bron, P.A.: The quest for probiotic effector molecules--unraveling strain specificity at the molecular level. Pharmacol. Res. 69, 61–742013 (2013)

    Article  CAS  PubMed  Google Scholar 

  6. Smits, H.H., Engering, A., van der Kleij, D., de Jong, E.C., Schipper, K., van Capel, T.M., Zaat, B.A., Yazdanbakhsh, M., Wierenga, E.A., van Kooyk, Y., Kapsenberg, M.L.: Selective probiotic bacteria induce IL-10-producing regulatory T cells in vitro by modulating dendritic cell function through dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin. J. Allergy Clin. Immunol. 115, 1260–1267 (2005)

    Article  CAS  PubMed  Google Scholar 

  7. Sengupta, R., Altermann, E., Anderson, R.C., McNabb, W.C., Moughan, P.J., Roy, N.C.: The role of cell surface architecture of lactobacilli in host-microbe interactions in the gastrointestinal tract. Mediat. Inflamm. 2013, 237921 (2013)

    Article  Google Scholar 

  8. Yasuda, E., Serata, M., Sako, T.: Suppressive effect on activation of macrophages by Lactobacillus casei strain Shirota genes determining the synthesis of cell wall-associated polysaccharides. Appl. Environ. Microbiol. 74, 4746–4755 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Górska, S., Schwarzer, M., Jachymek, W., Srutkova, D., Brzozowska, E., Kozakova, H., Gamian, A.: Distinct immunomodulation of bone marrow-derived dendritic cell responses to Lactobacillus plantarum WCFS1 by two different polysaccharides isolated from Lactobacillus rhamnosus LOCK 0900. Appl. Environ. Microbiol. 80, 6506–6516 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Górska, S., Hermanova, P., Ciekot, J., Schwarzer, M., Srutkova, D., Brzozowska, E., Kozakova, H., Gamian, A.: Chemical characterization and immunomodulatory properties of polysaccharides isolated from probiotic Lactobacillus casei LOCK 0919. Glycobiology. 26, 1014–1024 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Balzaretti, S., Taverniti, V., Guglielmetti, S., Fiore, W., Minuzzo, M., Ngo, H.N., Ngere, J.B., Sadiq, S., Humphreys, P.N., Laws, A.P.: A novel rhamnose-rich hetero-exopolysaccharide isolated from Lactobacillus paracasei DG activates THP-1 human monocytic cells. Appl. Environ. Microbiol. 83, pii: e02702–pii: e02716 (2017)

    Article  Google Scholar 

  12. Mazmanian, S.K., Kasper, D.L.: The love-hate relationship between bacterial polysaccharides and the host immune system. Nat. Rev. Immunol. 6, 849–858 (2006)

    Article  CAS  PubMed  Google Scholar 

  13. Mazmanian, S.K.: Capsular polysaccharides of symbiotic bacteria modulate immune responses during experimental colitis. J. Pediatr. Gastroenterol. Nutr. 46, E11–E12 (2008)

    Article  PubMed  Google Scholar 

  14. Mazmanian, S.K., Round, J.L., Kasper, D.L.: A microbial symbiosis factor prevents intestinal inflammatory disease. Nature. 453, 620–625 (2008)

    Article  CAS  PubMed  Google Scholar 

  15. Lamine, F., Eutamène, H., Fioramonti, J., Buéno, L., Théodorou, V.: Colonic responses to Lactobacillus farciminis treatment in trinitrobenzene sulphonic acid-induced colitis in rats. Scand. J. Gastroenterol. 39, 1250–1258 (2004a)

    Article  CAS  PubMed  Google Scholar 

  16. Lamine, F., Fioramonti, J., Bueno, L., Nepveu, F., Cauquil, E., Lobysheva, I., Eutamène, H., Théodorou, V.: Nitric oxide released by Lactobacillus farciminis improves TNBS-induced colitis in rats. Scand. J. Gastroenterol. 39, 37–45 (2004b)

    Article  CAS  PubMed  Google Scholar 

  17. Ait-Belgnaoui, A., Han, W., Lamine, F., Eutamène, H., Fioramonti, J., Bueno, L., Théodorou, V.: Lactobacillus farciminis treatment suppresses stress induced visceral hypersensitivity: a possible action through interaction with epithelial cell cytoskeleton contraction. Gut. 55, 1090–1094 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Da Silva, S., Robbe-Masselot, C., Ait Belgnaoui, A., Mancuso, A., Mercade-Loubière, M., Cartier, C., Gillet, M., Ferrier, L., Loubière, P., Dague, E., Théodorou, V., Mercier-Bonin, M.: Stress disrupts intestinal mucus barrier in rats via mucin O-glycosylation shift: prevention by a probiotic treatment. Am. J. Physiol. Gastrointest. Liver Physiol. 307, G420–G429 (2014)

    Article  CAS  PubMed  Google Scholar 

  19. Tareb, R., Bernardeau, M., Horvath, P., Vernoux, J.P.: Rough and smooth morphotypes isolated from Lactobacillus farciminis CNCM I-3699 are two closely-related variants. Int. J. Food Microbiol. 193, 82–90 (2015)

    Article  CAS  PubMed  Google Scholar 

  20. Altman, E., Brisson, J.R., Perry, M.B.: Structure of the O-antigenpolysaccharide of Haemophilus pleuropneumoniae serotype 3 (ATCC 27090) lipopolysaccharide. Carbohydr. Res. 179, 245–258 (1988)

    Article  CAS  PubMed  Google Scholar 

  21. Gerwig, G.J., Kamerling, J.P., Vliegenthart, J.F.: Determination of the absolute configuration of mono-saccharides in complex carbohydrates by capillary G.L.C. Carbohydr. Res. 77, 10–17 (1979)

    Article  CAS  PubMed  Google Scholar 

  22. Ciucanu, I., Kerek, F.: A simple and rapid method for the permethylation of carbohydrates. Carbohydr. Res. 131, 209–217 (1984)

    Article  CAS  Google Scholar 

  23. Read, S.M., Currie, G., Bacic, A.: Analysis of the structural heterogeneity of laminarin by electrospray-ionisation-mass spectrometry. Carbohydr. Res. 281, 187–201 (1996)

    Article  CAS  PubMed  Google Scholar 

  24. Dubois, M., Gilles, K.A., Hamilton, J.F., Rebers, P.A., Smyth, F.: Colorimetric methods for determination of sugars and related substances. Anal. Biochem. 28, 350–356 (1956)

    CAS  Google Scholar 

  25. Gatt, R., Berman, E.R.: A rapid procedure for the estimation of amino sugars on a micro scale. Anal. Biochem. 15, 167–171 (1966)

    Article  CAS  PubMed  Google Scholar 

  26. Tsuchiya, S., Yamabe, M., Yamaguchi, Y., Kobayashi, Y., Konno, T., Tada, K.: Establishment and characterization of a human acute monocytic leukemia cell line (THP-1). Int. J. Cancer. 26, 171–176 (1980)

    Article  CAS  PubMed  Google Scholar 

  27. Daigneault, M., Preston, J.A., Marriott, H.M., Whyte, M.K.B., Dockrell, D.H.: The identification of markers of macrophage differentiation in PMA-stimulated THP-1 cells and monocyte-derived macrophages. PLoS One. 5, e8668 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rodriguez, P., Heyman, M., Candalh, C., Blaton, M.A., Bouchaud, C.: Tumour necrosis factor-α induced morphological and functional alterations of intestinal HT29 cl.19A cell monolayers. Cytokine. 7, 441–448 (1995)

    Article  CAS  PubMed  Google Scholar 

  29. Moreau, M., Richards, J.C., Fournier, J.M., Byrd, R.A., Karakawa, W.W., Vann, W.F. Structure of the type 5 capsular polysaccharide of Staphylococcus aureus. Carbohydr. Res. 201, 285–297 (1990).

  30. Prakobphol, A., Linzer, R., Genco, R.J.: Purification and characterization of a rhamnose-containing cell wall antigen of Streptococcus mutans B13 (serotype d). Infect. Immun. 27, 150–157 (1980).

  31. Sadovskaya, I., Vinogradov, E., Courtin, P., Armalyte, J., Meyrand, M., Giaouris, E., Palussière, S., Furlan, S., Péchoux, C., Ainsworth, S., Mahony, J., van Sinderen, D., Kulakauskas, S., Guérardel, Y., Chapot-Chartier, M.P.: Another brick in the wall: a rhamnan polysaccharide trapped inside peptidoglycan of Lactococcus lactis. MBio. 8, pii: e01303–pii: e01317 (2017)

    Article  Google Scholar 

  32. Goldstein, I.J., Hay, G.W., Lewis, B.A., Smith, F.: Methods Carbohydr. Chem. 5, 361–370 (1965)

    CAS  Google Scholar 

  33. Koerner, T.A., Prestegard, J.H., Yu, R.K. Oligosaccharide structure by two-dimensional proton nuclear magnetic resonance spectroscopy. Methods Enzymol. 138, 38–59 (1987).

  34. Aliprantis, A.O., Yang, R.B., Mark, M.R., Suggett, S., Devaux, B., Radolf, J.D., Klimpel, G.R., Godowski, P., Zychlinsky, A.: Cell activation and apoptosis by bacterial lipoproteins through Toll-like receptor-2. Science. 285, 736–739 (1999)

    Article  CAS  PubMed  Google Scholar 

  35. Angulo, S., Llopis, M., Antolín, M., Gironella, M., Sans, M., Malagelada, J.R., Piqué, J.M., Guarner, F., Panés, J.: Lactobacillus casei prevents the upregulation of ICAM-1 expression and leukocyte recruitment in experimental colitis. Am. J. Physiol. Gastrointest. Liver Physiol. 291, G1155–1162 (2006).

  36. Elass-Rochard, E., Rombouts, Y., Coddeville, B., Maes, E., Blervaque, R., Hot, D., Kremer, L., Guérardel, Y.: Structural determination and Toll-like receptor 2-dependent proinflammatory activity of dimycolyl-diarabino-glycerol from Mycobacterium marinum. J. Biol. Chem. 287, 34432-34444 (2012)

  37. Prieto, J., Eklund, A., Patarroyo, M.: Regulated expression of integrins and other adhesion molecules during differentiation of monocytes into macrophages. Cell. Immunol. 156, 191–211 (1994)

    Article  CAS  PubMed  Google Scholar 

  38. Lebedeva, T., Dustin, M.L, Sykulev, Y.: ICAM-1 co-stimulates target cells to facilitate antigen presentation. Curr. Opin. Immunol. 17, 251–258 (2005).

  39. Ryan, P.M., Ross, R.P., Fitzgerald, G.F., Caplice, N.M., Stanton, C.: Sugar-coated: exopolysaccharide producing lactic acid bacteria for food and human health applications. Food Funct. 6, 679–693 (2015).

  40. Choudhury, B., Leoff, C., Saile, E., Wilkins, P., Quinn, C.P., Kannenberg, E.L., Carlson, R.W. The structure of the major cell wall polysaccharide of Bacillus anthracis is species-specific. J. Biol. Chem. 281, 27932-27941 (2006)

  41. Candela, T., Maes, E., Garenaux, E., Rombouts, Y., Krzewinski, F., Gohar, M., Guerardel, Y.: Environmental and biofilm-dependent changes in a Bacillus cereus secondary cell wall polysaccharide. J. Biol. Chem. 286, 31250-31262 (2011)

  42. Forsberg, L.S., Choudhury, B., Leoff, C., Marston, C.K., Hoffmaster, A.R., Saile, E., Quinn, C.P., Kannenberg, E.L., Carlson, R.W.: Secondary cell wall polysaccharides from Bacillus cereus strains G9241, 03BB87 and 03BB102 causing fatal pneumonia share similar glycosyl structures with the polysaccharides from Bacillus anthracis. Glycobiology. 21, 934–948 (2011).

  43. Nagaoka, M., Muto, M., Nomoto, K., Matuzaki, T., Watanabe, T., Yokokura, T.: Structure of polysaccharide-peptidoglycan complex from the cell wall of Lactobacillus casei YIT9018. J. Biochem. 108, 568–571 (1990).

  44. Vinogradov, E., Sadovskaya, I., Grard, T., Chapot-Chartier, M.P.: Structural studies of the rhamnose-rich cell wall polysaccharide of Lactobacillus casei BL23. Carbohydr Res. 435, 156–161 (2016).

  45. Vinogradov, E., Valence, F., Maes, E., Jebava, I., Chuat, V., Lortal, S., Grard, T., Guerardel, Y., Sadovskaya, I.: Structural studies of the cell wall polysaccharides from three strains of Lactobacillus helveticus with different autolytic properties: DPC4571, BROI, and LH1, Carbohydr. Res. 379, 7–12 (2013).

  46. Ciszek-Lenda, M., Nowak, B., Srottek, M., Gamian, A., Marcinkiewicz, J.: Immunoregulatory potential of exopolysaccharide from Lactobacillus rhamnosus KL37: effects on the production of inflammatory mediators by mouse macrophages. Int. J. Exp. Pathol. 92, 382–391 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gao, K., Wang, C., Liu, L., Dou, X., Liu, J., Yuan, L., Zhang, W., Wang, H.: Immunomodulation and signaling mechanism of Lactobacillus rhamnosus GG and its components on porcine intestinal epithelial cells stimulated by lipopolysaccharide. J. Microbiol. Immunol. Infect. 50, 700–713 (2017).

  48. Liu, C.F., Tseng, K.C., Chiang, S.S., Lee, B.H., Hsu, W.H., Pan, T.M.: Immunomodulatory and antioxidant potential of Lactobacillus exopolysaccharides. J. Sci. Food Agric. 91, 2284–2291 (2011)

    CAS  PubMed  Google Scholar 

  49. Patten, D.A., Leivers, S., Chadha, M.J., Maqsood, M., Humphreys, P.N., Laws, A.P., Collett, A.: The structure and immunomodulatory activity on intestinal epithelial cells of the EPSs isolated from Lactobacillus helveticus sp. rosyjski and Lactobacillus acidophilus sp. 5e2. Carbohydr. Res. 384, 119–127 (2014)

    Article  CAS  PubMed  Google Scholar 

  50. Patten, D.A., Laws, A.P.: Lactobacillus-produced exopolysaccharides and their potential health benefits: a review. Benef. Microbes. 6, 457–471 (2015)

    Article  CAS  PubMed  Google Scholar 

  51. Shao, L., Wu, Z., Zhang, H., Chen, W., Ai, L., Guo, B.: Partial characterization and immunostimulatory activity of exopolysaccharides from Lactobacillus rhamnosus KF5. Carbohyd. Polym. 107, 51–56 (2014)

    Article  CAS  Google Scholar 

  52. Vinderola, G., Perdigon, G., Duarte, J., Farnworth, E., Matar, C.: Effects of the oral administration of the exopolysaccharide produced by Lactobacillus kefiranofaciens on the gut mucosal immunity. Cytokine. 36, 254–260 (2006)

    Article  CAS  PubMed  Google Scholar 

  53. Chanput, W., Mes, J.J., Wichers, H.J.: THP-1 cell line: An in vitro cell model for immune modulation approach. Int. Immunopharmacol. 23, 37–45 (2014)

    Article  CAS  Google Scholar 

  54. Lebeer, S., Claes, I.J., Verhoeven, T.L., Vanderleyden, J., De Keersmaecker, S.C.: Exopolysaccharides of Lactobacillus rhamnosus GG form a protective shield against innate immune factors in the intestine. Microb. Biotechnol. 4, 368–374 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Chabot, S., Yu, H.-L., Léséleuc, L.D., Cloutier, D., Van Calsteren, M.-R., Lessard, M., Roy, D., Lacroix, M., Oth, D.: Exopolysaccharides from Lactobacillus rhamnosus RW-9595 M stimulate TNF. Lait. 81, 683–697 (2001)

    Article  CAS  Google Scholar 

  56. Górska, S., Sandstrőm, C., Wojas-Turek, J., Rossowska, J., Pajtasz-Piasecka, E., Brzozowska, E., Gamian, A.: Structural and immunomodulatory differences among lactobacilli exopolysaccharides isolated from intestines of mice with experimentally induced inflammatory bowel disease. Sci. Rep. 6, 37,613 (2016)

    Article  CAS  Google Scholar 

  57. Matsumoto, S., Hara, T., Nagaoka, M., Mike, A., Mitsuyama, K., Sako, T., Yamamoto, M., Kado, S., Takada, T.: A component of polysaccharide peptidoglycan complex on Lactobacillus induced an improvement of murine model of inflammatory bowel disease and colitis-associated cancer. Immunology. 128, e170–80 (2009).

  58. Kishimoto, M., Nomoto, R., Mizuno, M., Osawa, R.: An in vitro investigation of immunomodulatory properties of Lactobacillus plantarum and L. delbrueckii cells and their extracellular polysaccharides. Biosci. Microbiota Food Health. 36, 101–110 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lebeer, S., Verhoeven, T.L.A., Francius, G., Schoofs, G., Lambrichts, I., Dufrêne, Y., Vanderleyden, J., De Keersmaecker, S.C.J.: Identification of a gene cluster for the biosynthesis of a long, galactose-rich exopolysaccharide in Lactobacillus rhamnosus GG and functional analysis of the priming glycosyltransferase. Appl. Environ. Microbiol. 75, 3554–3563 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Górska-Frączek, S., Sandstrom, C., Kenne, L., Rybka, J., Strus, M., Heczko, P., Gamian, A.: Structural studies of the exopolysaccharide consisting of a nonasaccharide repeating unit isolated from Lactobacillus rhamnosus KL37B. Carbohydr. Res. 346, 2926–2932 (2011)

    Article  CAS  PubMed  Google Scholar 

  61. Nikolic, M., López, P., Strahinic, I., Suárez, A., Kojic, M., Fernández-García, M., Topisirovic, L., Golic, N., Ruas-Madiedo, P.: Characterisation of the exopolysaccharide (EPS)-producing Lactobacillus paraplantarum BGCG11 and its non-EPS producing derivative strains as potential probiotics. Int. J. Food Microbiol. 158, 155–162 (2012).

  62. Polak-Berecka, M., Waśko, A., Paduch, R., Skrzypek, T., Sroka-Bartnicka, A.: The effect of cell surface components on adhesion ability of Lactobacillus rhamnosus. Antonie Van Leeuwenhoek. 106, 751–762 (2014).

  63. Wachi, S., Kanmani, P., Tomosada, Y., Kobayashi, H., Yuri, T., Egusa, S., Shimazu, T., Suda, Y., Aso, H., Sugawara, M., Saito, T., Mishima, T., Villena, J., Kitazawa, H.: Lactobacillus delbrueckii TUA4408L and its extracellular polysaccharides attenuate enterotoxigenic Escherichia coli-induced inflammatory response in porcine intestinal epitheliocytes via Toll-like receptor-2 and 4. Mol. Nutr. Food Res. 58, 2080–2093 (2014)

    Article  CAS  PubMed  Google Scholar 

  64. Devriese, S., Van den Bossche, L., Van Welden, S., Holvoet, T., Pinheiro, I., Hindryckx, P., De Vos, M., Laukens, D.: T84 monolayers are superior to Caco-2 as a model system of colonocytes. Histochem. Cell Biol. 148, 85–93 (2017).

  65. Wang, F., Graham, W.V., Wang, Y., Witkowski, E.D., Schwarz, B.T., Turner J.R.: Interferon-gamma and tumor necrosis factor-alpha synergize to induce intestinal epithelial barrier dysfunction by up-regulating myosin light chain kinase expression. Am. J. Pathol. 166, 409–419 (2005).

  66. Contreras, T. C., Ricciardi, E., Cremonini, E., Oteiza, P.I.: (-)-Epicatechin in the prevention of tumor necrosis alpha-induced loss of Caco-2 cell barrier integrity. Arch. Biochem. Biophys. 573, 84–91 (2015).

  67. Cui, W., Li, L.X., Sun, C.M., Wen, Y., Zhou, Y., Dong, Y.L., Liu, P.: Tumor necrosis factor alpha increases epithelial barrier permeability by disrupting tight junctions in Caco-2 cells. J. Med. Biol. Res. 43, 330–337 (2010).

  68. Hsieh, C.Y., Osaka, T., Moriyama, E., Date, Y., Kikuchi, J., Tsuneda, S.: Strengthening of the intestinal epithelial tight junction by Bifidobacterium bifidum. Physiol. Rep. 3, 12,327 (2015)

    Article  CAS  Google Scholar 

  69. Kawaguchi, H., Akazawa, Y., Watanabe, Y., Takakura, Y.: Permeability modulation of human intestinal Caco-2 cell monolayers by interferons. Eur. J. Pharm. Biopharm. 59, 45–50 (2005)

    Article  CAS  PubMed  Google Scholar 

  70. Zivkovic, M., Hidalgo-Cantabrana, C., Kojic, M., Gueimonde, M., Golic, N., Ruas-Madiedo, P.: Capability of exopolysaccharide-producing Lactobacillus paraplantarum BGCG11 and its non-producing isogenic strain NB1, to counteract the effect of enteropathogens upon the epithelial cell line HT29-MTX. Food Res. Int. 74, 199–207 (2015).

Download references

Acknowledgements

The authors wish to acknowledge Lallemand SA (France) and Lallemand-Institut Rosell (Canada) for providing the L. farciminis strain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muriel Mercier-Bonin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maes, E., Sadovskaya, I., Lévêque, M. et al. Structure and biological activities of a hexosamine-rich cell wall polysaccharide isolated from the probiotic Lactobacillus farciminis. Glycoconj J 36, 39–55 (2019). https://doi.org/10.1007/s10719-018-09854-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-018-09854-y

Keywords

Navigation