Skip to main content

Advertisement

Log in

Evidence of glucuronidation of the glycation product LW-1: tentative structure and implications for the long-term complications of diabetes

  • Original Article
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

LW-1 is a collagen-linked blue fluorophore whose skin levels increase with age, diabetes and end-stage renal disease (ESRD), and correlate with the long-term progression of microvascular disease and indices of subclinical cardiovascular disease in type 1 diabetes. The chemical structure of LW-1 is still elusive, but earlier NMR analyses showed it has a lysine residue in an aromatic ring coupled to a sugar molecule reminiscent of advanced glycation end-products (AGEs). We hypothesized and demonstrate here that the unknown sugar is a N-linked glucuronic acid. LW-1 was extracted and highly purified from ~99 g insoluble skin collagen obtained at autopsy from patients with diabetes/ESRD using multiple rounds of proteolytic digestion and purification by liquid chromatography (LC). Advanced NMR techniques (1H–NMR, 13C–NMR, 1H-13C HSQC, 1H-1H TOCSY, 1H-13C HMBC) together with LC-mass spectrometry (MS) revealed a loss of 176 amu (atomic mass unit) unequivocally point to the presence of a glucuronic acid moiety in LW-1. To confirm this data, LW-1 was incubated with β-glycosidases (glucosidase, galactosidase, glucuronidase) and products were analyzed by LC-MS. Only glucuronidase could cleave the sugar from the parent molecule. These results establish LW-1 as a glucuronide, now named glucuronidine, and for the first time raise the possible existence of a “glucuronidation pathway of diabetic complications”. Future research is needed to rigorously probe this concept and elucidate the molecular origin and biological source of a circulating glucuronidine aglycone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Monnier, V.M., Vishwanath, V., Frank, K.E., Elemts, C.A., Dauchot, P., Kohn, R.R.: Relation between complications of type 1 diabetes mellitus and collagen-linked fluorescence. New Engl. J. Med. 314, 403–408 (1986)

    Article  CAS  PubMed  Google Scholar 

  2. Baynes, J.W.: Perspectives in diabetes: role of oxidative stress in development of complications in diabetes. Diabetes. 40, 405–412 (1991)

    Article  CAS  PubMed  Google Scholar 

  3. Sell, D., Monnier, V.: Molecular basis of arterial stiffening: role of glycation - a mini-review. Gerontology. 58, 227–237 (2012)

    Article  CAS  PubMed  Google Scholar 

  4. Gerrits, E.G., Lutgers, H.L., Kleefstra, N., Graaff, R., Groenier, K.H., Smit, A.J., Gans, R.O., Bilo, H.J.: Skin autofluorescence: a tool to identify type 2 diabetic patients at risk for developing microvascular complications. Diabetes Care. 31, 517–521 (2008)

    Article  CAS  PubMed  Google Scholar 

  5. Siriopol, D., Hogas, S., Veisa, G., Mititiuc, I., Volovat, C., Apetrii, M., Onofriescu, M., Busila, I., Oleniuc, M., Covic, A.: Tissue advanced glycation end products (AGEs), measured by skin autofluorescence, predict mortality in peritoneal dialysis. Int. Urol. Nephrol. 47, 563–569 (2015)

    Article  CAS  PubMed  Google Scholar 

  6. Sell, D.R., Monnier, V.M.: Structure elucidation of a senescence cross-link from human extracellular matrix. J. Biol. Chem. 264, 21597–21602 (1989)

  7. Shipanova, I.N., Glomb, M.A., Nagaraj, R.H.: Protein modification by methylglyoxal: chemical nature and synthetic mechanism of major fluorescent adduct. Arch. Biochem. Biophys. 344, 29–36 (1997)

    Article  CAS  PubMed  Google Scholar 

  8. Tessier, F., Obrenovich, M., Monnier, V.M.: Structure and mechanism of formation of human lens fluorophore LM-1. Relationship to vesperlysine a and the advanced Maillard reaction in aging, diabetes, and cataractogenesis. J. Biol. Chem. 274, 20796–20804 (1999)

  9. Tessier, F.J., Monnier, V.M., Sayre, L.M., Kornfield, J.A.: Triosidines: novel Maillard reaction products and cross-links from the reaction of triose sugars with lysine and arginine residues. Biochem. J. 369, 705–719 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sell, D.R., Nemet, I., Monnier, V.M.: Partial characterization of the molecular nature of collagen-linked fluorescence: role of diabetes and end-stage renal disease. Arch. Biochem. Biophys. 493, 192–206 (2010)

    Article  CAS  PubMed  Google Scholar 

  11. Sinz, M.W., Remmel, R.P.: Isolation and characterization of a novel quaternary ammonium-linked glucuronide of lamotrigine. Drug Metab. Dispos. 19, 149–153 (1991)

    CAS  PubMed  Google Scholar 

  12. Welsch, T., Humpf, H.U.: HT-2 toxin 4-glucuronide as new T-2 toxin metabolite: enzymatic synthesis, analysis, and species specific formation of T-2 and HT-2 toxin glucuronides by rat, mouse, pig, and human liver. J. Agric. Food Chem. 60, 10170–10178 (2012)

    Article  CAS  PubMed  Google Scholar 

  13. Jonsson, A.P., Griffiths, W.J., Bratt, P., Johansson, I., Strömberg, N., Jörnvall, H., Bergman, T.: A novel Ser O-glucuronidation in acidic proline-rich proteins identified by tandem mass spectrometry. FEBS Lett. 475, 131–134 (2000)

    Article  CAS  PubMed  Google Scholar 

  14. Stegeman, H., Stalder, S.: Determination of hydroxyproline. Clin. Chim. Acta. 18, 267–273 (1967)

    Article  Google Scholar 

  15. Hamlin, C.R., Kohn, R.R.: Evidence for progressive, age-related structural changes in post-mature human collagen. Biochim. Biophys. Acta. 236, 458–467 (1971)

  16. Moore, S., Stein, W.H.: A modified ninhydrin reagent for the photometric determination of amino acids and related compounds. J. Biol. Chem. 211, 907–913 (1954)

    CAS  PubMed  Google Scholar 

  17. Garner, B., Vazquez, S., Griffith, R., Lindner, R.A., Carver, J.A., Truscott, R.J.: Identification of glutathionyl-3-hydroxykynurenine glucoside as a novel fluorophore associated with aging of the human lens. J. Biol. Chem. 274, 20847–20854 (1999)

    Article  CAS  PubMed  Google Scholar 

  18. Pretsch, E., Buhlmann, P., Affolter, C.: Structure Determination of Organic Compounds: Tables of Spectral Data. Springer-Verlag, New York (2000)

    Book  Google Scholar 

  19. Natsume, M., Osakabe, N., Oyama, M., Sasak, M., Baba, S., Nakamura, Y., Osawa, T., Terao, J.: Structures of (−)-epicatechin glucuronide identified from plasma and urine after oral ingestion of (−)-epicatechin: differences between human and rat. Free Radic. Biol. Med. 34, 840–849 (2003)

    Article  CAS  PubMed  Google Scholar 

  20. Cui, L., Qiu, F., Yao, X.: Isolation and identification of seven glucuronide conjugates of andrographolide in human urine. Drug Metab. Dispos. 33, 555–562 (2005)

    Article  CAS  PubMed  Google Scholar 

  21. Mahmoud, A.A., Al-Shihry, S.S., Hegazy, M.E.: Biological activity of a phloroglucinol glucoside derivative from Conyza Aegyptiaca. Z. Naturforsch. C. 64, 513–517 (2009)

    Article  CAS  PubMed  Google Scholar 

  22. Zhu, Q., Zhang, J., Yang, P., Tan, B., Liu, X., Zheng, Y., Cai, W., Zhu, Y.: Characterization of metabolites of leonurine (SCM-198) in rats after oral administration by liquid chromatography/tandem mass spectrometry and NMR spectrometry. Sci. World J. 947946, (2014). https://doi.org/10.1155/2014/947946

  23. Azaroual, N., Imbenotte, M., Cartigny, B., Leclerc, F., Vallée, L., Lhermitte, M., Vermeersch, G.: Valproic acid intoxication identified by 1H and 1H-(13)C correlated NMR spectroscopy of urine samples. MAGMA. 10, 177–182 (2000)

    CAS  PubMed  Google Scholar 

  24. Tang, W., Abbott, F.S.: Bioactivation of a toxic metabolite of valproic acid, (E)-2-propyl-2,4-pentadienoic acid, via glucuronidation. LC/MS/MS characterization of the GSH-glucuronide diconjugates. Chem. Res. Toxicol. 9, 517–526 (1996)

    Article  CAS  PubMed  Google Scholar 

  25. Robins, S.P., Bailey, A.J.: Isolation and characterization of glycosyl derivatives of the reducible cross-links in collagens. FEBS Lett. 38, 334–336 (1974)

    Article  CAS  PubMed  Google Scholar 

  26. Pinnell, S.R., Fox, R., Krane, S.M.: Human collagens: differences in glycosylated hydroxylysines in skin and bone. Biochim. Biophys. Acta. 229, 119–122 (1971)

    Article  CAS  PubMed  Google Scholar 

  27. Monticelli, E., Aman, C.S., Costa, M.L., Rota, P., Bogdan, D., Allevi, P., Cighetti, G.: Simultaneous free and glycosylated pyridinium crosslink determination in urine: validation of an HPLC-fluorescence method using a deoxypyridinoline homologue as internal standard. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 879, 2764–2771 (2011)

    Article  CAS  PubMed  Google Scholar 

  28. Presle, N., Lapicque, F., Fournel-Gigleux, S., Magdalou, J., Netter, P.: Stereoselective irreversible binding of ketoprofen glucuronides to albumin. Characterization of the site and the mechanism. Drug Metab. Dispos. 24, 1050–1057 (1996)

    CAS  PubMed  Google Scholar 

  29. Gabius, H.-J., Gabius, S. (eds.): Glycosciences. Status and Perspectives. Chapman and Hall, Weinheim (1997)

    Google Scholar 

  30. Mácsai, E., Takáts, Z., Derzbach, L., Körner, A., Vásárhelyi, B.: Verification of skin autofluorescence values by mass spectrometry in adolescents with type 1 diabetes: brief report. Diabetes Technol. Ther. 15, 269–272 (2013)

    Article  PubMed  Google Scholar 

  31. Miettinen, T.A., Leskinen, E.: Glucuronic acid pathway. In: Fishman, W.H. (ed.) Metabolic Conjugation and Metabolic Hydrolysis, vol. 1, pp. 157–237. Academic Press, Cambridge (1970)

    Chapter  Google Scholar 

  32. Shafat, I., Ilan, N., Zoabi, S., Vlodavsky, I., Nakhoul, F.: Heparanase levels are elevated in the urine and plasma of type 2 diabetes patients and associate with blood glucose levels. PLoS One. 6, e17312 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Peterson, S., Liu, J.: Deciphering mode of action of heparanase using structurally defined oligosaccharides. J. Biol. Chem. 287, 34836–34843 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hiebert, L.M.: Proteoglycans and diabetes. Curr. Pharm. Des. 23, 1500–1509 (2017)

    Article  CAS  PubMed  Google Scholar 

  35. Goldberg, R., Rubinstein, A.M., Gil, N., Hermano, E., Li, J.P., van der Vlag, J., Atzmon, R., Meirovitz, A., Elkin, M.: Role of heparanase-driven inflammatory cascade in pathogenesis of diabetic nephropathy. Diabetes. 63, 4302–4313 (2014)

    Article  CAS  PubMed  Google Scholar 

  36. Cohen-Mazor, M., Sela, S., Mazor, R., Ilan, N., Vlodavsky, I., Rops, A.L., van der Vlag, J., Cohen, H.I., Kristal, B.: Are primed polymorphonuclear leukocytes contributors to the high heparanase levels in hemodialysis patients? Am. J. Physiol. Heart Circ. Physiol. 294, H651–H658 (2008)

    Article  CAS  PubMed  Google Scholar 

  37. Sell, D.R., Sun, W., Gao, X., Strauch, C., Lachin, J.M., Cleary, P.A., Genuth, S.: DCCT/EDIC research group, Monnier, V.M.: Skin collagen fluorophore LW-1 versus skin fluorescence as markers for the long-term progression of subclinical macrovascular disease in type 1 diabetes. Cardiovasc. Diabetol. 15(30), 1–14 (2016)

  38. Eisenburg, F.J., Dayton, P.G., Burns, J.J.: Studies on the glucuronic acid pathway of glucose metabolism. J. Biol. Chem. 234, 250–253 (1959)

    Google Scholar 

  39. Winegrad, A.I., Burden, C.L.: Hyperactivity of the glucuronic acid pathway in diabetes mellitus. Trans. Assoc. Am. Phys. 78, 158–173 (1965)

    CAS  PubMed  Google Scholar 

  40. Saltzman, A., Caraway, W.T., Beck, I.A.: Serum glucuronic acid levels in diabetes mellitus. Metabolism. 3, 11–15 (1954)

    CAS  PubMed  Google Scholar 

  41. Merimee, T.J., Misbin, R.I., Gold, L.: Elevated L-xylulose concentrations in serum: a difference between type I and type II diabetes. Metabolism. 33, 82–84 (1984)

  42. Green, S., Anstiss, C., Fishman, W.H.: Determination of unconjugated glucuronic acid in deproteinized human blood. Biochim. Biophys. Acta. 62, 574–575 (1962)

    Article  CAS  PubMed  Google Scholar 

  43. Winegrad, A.I., Burden, C.L.: L-xylulose metabolism in diabetes mellitus. N. Engl. J. Med. 274, 298–305 (1966)

    Article  CAS  PubMed  Google Scholar 

  44. Dostalek, M., Court, M.H., Hazarika, S., Akhlaghi, F.: Diabetes mellitus reduces activity of human UDP-glucuronosyltransferase 2B7 in liver and kidney leading to decreased formation of mycophenolic acid acyl-glucuronide metabolite. Drug Metab. Dispos. 39, 448–455 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Fischer, E., Almási, A., Bojcsev, S., Fischer, T., Kovács, N.P., Perjési, P.: Effect of experimental diabetes and insulin replacement on intestinal metabolism and excretion of 4-nitrophenol in rats. Can. J. Physiol. Pharmacol. 93, 459–464 (2015)

    Article  CAS  PubMed  Google Scholar 

  46. Braun, L., Coffey, M.J., Puskás, F., Kardon, T., Nagy, G., Conley, A.A., Burchell, B., Mandl, J.: Molecular basis of bilirubin UDP-glucuronosyltransferase induction in spontaneously diabetic rats, acetone-treated rats and starved rats. Biochem. J. 336, 587–592 (1998)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Price, V.F., Jollow, D.J.: Increased resistance of diabetic rats to acetaminophen-induced hepatotoxicity. J. Pharmacol. Exp. Ther. 220, 504–513 (1982)

    CAS  PubMed  Google Scholar 

  48. Clarke, D.J., Burchell, B.: The uridine diphosphate glucuronosyltransferase multigene family: function and regulation. In: Kauffman, F.C. (ed.) Handbook of Experimental Pharmacology: Conjugation-Deconjugation Reactions in Drug Metabolism and Toxicity, vol. 112, pp. 3–43. Springer-Verlag, New York (1994)

    Chapter  Google Scholar 

  49. Xie, H., Sun, S., Cheng, X., Yan, T., Zheng, X., Li, F., Qi, Q., Wang, G., Hao, H.: Dysregulations of intestinal and colonic UDP-glucuronosyltransferases in rats with type 2 diabetes. Drug Metab. Pharmacokinet. 28, 427–434 (2013)

  50. Chorné, R., Mendoza, C., Pisanty, J., Castro, N., Loría, A.: Increase of conjugated bilirubin in diabetics. Rev. Invest. Clin. 46, 237–239 (1994)

  51. Vandenput, L., Mellström, D., Lorentzon, M., Swanson, C., Karlsson, M.K., Brandberg, J., Lönn, L., Orwoll, E., Smith, U., Labrie, F., Ljunggren, O., Tivesten, A., Ohlsson, C.: Androgens and glucuronidated androgen metabolites are associated with metabolic risk factors in men. J. Clin. Endocrinol. Metab. 92, 4130–4137 (2007)

    Article  CAS  PubMed  Google Scholar 

  52. Brownlee, M.: Biochemistry and molecular cell biology of diabetic complications. Nature. 414, 813–820 (2001)

    Article  CAS  PubMed  Google Scholar 

  53. Sallustio, B.C., Degraaf, Y.C., Weekley, J.S., Burcham, P.C.: Bioactivation of carboxylic acid compounds by UDP-glucuronosyltransferases to DNA-damaging intermediates: role of glycoxidation and oxidative stress in genotoxicity. Chem. Res. Toxicol. 19, 683–691 (2006)

    Article  CAS  PubMed  Google Scholar 

  54. Southwood, H.T., DeGraaf, Y.C., Mackenzie, P.I., Miners, J.O., Burcham, P.C., Sallustio, B.C.: Carboxylic acid drug-induced DNA nicking in HEK293 cells expressing human UDP-glucuronosyltransferases: role of acyl glucuronide metabolites and glycation pathways. Chem. Res. Toxicol. 20, 1520–1527 (2007)

    Article  CAS  PubMed  Google Scholar 

  55. Golbidi, S., Ebadi, S.A., Laher, I.: Antioxidants in the treatment of diabetes. Curr. Diabetes Rev. 7, 106–125 (2011)

    Article  CAS  PubMed  Google Scholar 

  56. Hjelle, J.J.: Hepatic UDP-glucuronic acid regulation during acetaminophen biotransformation in rats. J. Pharmacol. Exp. Ther. 237, 750–756 (1986)

    CAS  PubMed  Google Scholar 

  57. Ruvalcaba, R.H., Limbeck, G.A., Kelley, V.C.: Acetaminophen and hypoglycemia. Am. J. Dis. Child. 112, 558–560 (1966)

    CAS  PubMed  Google Scholar 

  58. Chen, H., Carlson, E.C., Pellet, L., Moritz, J.T., Epstein, P.N.: Overexpression of metallothionein in pancreatic beta-cells reduces streptozotocin-induced DNA damage and diabetes. Diabetes. 50, 2040–2046 (2001)

    Article  CAS  PubMed  Google Scholar 

  59. Tavares-Almeida, I., Gulyassy, P.F., Depner, T.A., Jarrard, E.A.: Aromatic amino acid metabolites as potential protein binding inhibitors in human uremic plasma. Biochem. Pharmacol. 34, 2431–2438 (1985)

    Article  CAS  PubMed  Google Scholar 

  60. Arena, S., Salzano, A.M., Renzone, G., D'Ambrosio, C., Scaloni, A.: Non-enzymatic glycation and glycoxidation protein products in foods and diseases: an interconnected, complex scenario fully open to innovative proteomic studies. Mass Spectrom. Rev. 33, 49–77 (2014)

    Article  CAS  PubMed  Google Scholar 

  61. Poesen, R., Evenepoel, P., de Loor, H., Kuypers, D., Augustijns, P., Meijers, B.: Metabolism, protein binding, and renal clearance of microbiota-derived p-cresol in patients with CKD. Clin. J. Am. Soc. Nephrol. 11, 1136–1144 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Verbeeck, R.K.: Glucuronidation and disposition of drug glucuronides in patients with renal failure: a review. Drug Metab. Dispos. 10, 87–89 (1982)

    CAS  PubMed  Google Scholar 

  63. Liabeuf, S., Glorieux, G., Lenglet, A., Diouf, M., Schepers, E., Desjardins, L., Choukroun, G., Vanholder, R., Massy, Z.A., Group, E.U.T.E.W: Does p-cresyl glucuronide have the same impact on mortality as other protein-bound uremic toxins? PLoS One. 8, e67168 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Le Moel, G., Troupel, S., Rottembourg, J., Dolegeal, M., Issak, K., Agneray, J., Galli, A.: Glucuronoconjugates in chronic renal failure. Comparative determination with values in healthy adult. Biomater. Artif. Cells Artif. Organs. 15, 191–197 (1987)

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the University Hospitals Cleveland Medical Center, Cleveland, OH and the National Disease Research Interchange (NDRI), Philadelphia, PA for providing the skin tissue. We thank Christopher Strauch for assistance with mass spectrometry analyses.

Funding

This study was funded by grants from the NIDDK (R21 DK-79432 to D.R.S., DK101123 to V.M.M.) and JDRF (17–2010-318 to V.M.M.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to David R. Sell or Vincent M. Monnier.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sell, D.R., Nemet, I., Liang, Z. et al. Evidence of glucuronidation of the glycation product LW-1: tentative structure and implications for the long-term complications of diabetes. Glycoconj J 35, 177–190 (2018). https://doi.org/10.1007/s10719-017-9810-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-017-9810-7

Keywords

Navigation