Skip to main content

Advertisement

Log in

A lectin-based cell microarray approach to analyze the mammalian granulosa cell surface glycosylation profile

  • Glycoarray Section
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

The high complexity of glycome, the repertoire of glycans expressed in a cell or in an organism, is difficult to analyze and the use of new technologies has accelerated the progress of glycomics analysis. In the last decade, the microarray approaches, and in particular glycan and lectin microarrays, have provided new insights into evaluation of cell glycosylation status. Here we present a cell microarray method based on cell printing on microarray slides for the analysis of the glycosylation pattern of the cell glycocalyx. In order to demonstrate the reliability of the developed method, the glycome profiles of equine native uncultured mural granulosa cells (uGCs) and in vitro cultured mural granulosa cells (cGCs) were determined and compared. The method consists in the isolation of GCs, cell printing into arrays on microarray slide, incubation with a panel of biotinylated lectins, reaction with fluorescent streptavidin and signal intensity detection by a microarray scanner. Cell microarray technology revealed that glycocalyx of both uGCs and cGCs contains N-glycans, sialic acid terminating glycans, N-acetylglucosamine and O-glycans. The comparison of uGCs and cGCs glycan signals indicated an increase in the expression of sialic acids, N-acetylglucosamine, and N-glycans in cGCs. Glycan profiles determined by cell microarray agreed with those revealed by lectin histochemistry. The described cell microarray method represents a simple and sensitive procedure to analyze cell surface glycome in mammalian cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sharon, N., Lis, H.: History of lectins: from hemagglutinins to biological recognition molecules. Glycobiology 14, 53R–62R (2004)

    Article  CAS  PubMed  Google Scholar 

  2. Ferguson, R.E., Jackson, D.H., Hutson, R., Wilkinson, N., Harnden, P., Selby, P., Banks, R.E.: Detection of glycosylation changes in serum and tissue proteins in cancer by lectin blotting. Adv. Exp. Med. Biol. 564, 113–114 (2005)

    Article  CAS  PubMed  Google Scholar 

  3. Gemeiner, P., Mislovičová, D., Tkáč, J., Švitel, J., Pätoprstý, V., Hrabárová, E., Kogan, G., Kožár, T.: Lectinomics II. A highway to biomedical/clinical diagnostics. Biotechnol. Adv. 27, 1–15 (2009)

  4. Katrlík, J., Švitel, J., Gemeiner, P., Kožár, T., Tkac, J.: Glycan and lectin microarrays for glycomics and medicinal applications. Med. Res. Rev. 30, 394–418 (2010)

  5. Pilobello, K.T., Slawek, D.E., Mahal, L.K.: A ratiometric lectin microarray approach to analysis of the dynamic mammalian glycome. PNAS 104, 11534–11539 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hirabayashi, J.: Development of lectin microarray, an advanced system for glycan profiling. Synthesiology 7, 105–117 (2014)

    Article  CAS  Google Scholar 

  7. Rillahan, C.D., Paulson, J.C.: Glycan microarrays for decoding the glycome. Annu. Rev. Biochem. 80, 797–823 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Stowell, S.R., Connie, M.A., McBride, R., Berger, O., Razi, N., Heimburg-Molinaro, J., Rodrigues, L.C., Gourdine, J.-P., Noll, A.J., von Gunten, S., Smith, D.F., Knirel, Y.A., Paulson, J.C., Cummings, R.D.: Microbial glycan microarrays define key features of host-microbial interactions. Nat. Chem. Biol. 10, 470–476 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Flitsch, S.L., Ulijn, R.V.: Sugars tied to the spot. Nature 421, 219–220 (2003)

    Article  CAS  PubMed  Google Scholar 

  10. Shilova, N., Navakouski, M., Khasbiullina, N., Blixt, O., Bovin, N.: Printed glycan array: antibodies as probed in undiluted serum and effects of dilution. Glycoconj. J. 29, 87–91 (2012)

    Article  CAS  PubMed  Google Scholar 

  11. Yarmush, M.L., King, K.R.: Living-cell microarrays. Annu. Rev. Biomed. Eng. 11, 235–257 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. He, J., Liu, Y., Xie, X., Zhu, T., Soules, M., DiMeco, F., Vescovi, A.L., Fan, X., Lubman, D.M.: Identification of cell surface glycoprotein markers for glioblastoma-derived stem-like cells using a lectin microarray and LC − MS/MS approach. J. Proteome Res. 9, 2565–2572 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Anglin, E., Davey, R., Herrid, M., Hope, S., Kurkuri, M., Pasic, P., Hor, M., Fenech, M., Thissen, H., Voelcker, N.H.: Cell microarrays for the screening of factors that allow the enrichment of bovine testicular cells. Cytometry A 77, 881–889 (2010)

    Article  PubMed  Google Scholar 

  14. Schwenk, J.M., Stoll, D., Templin, M.F., Joos, T.O.: Cell microarrays: an emerging technology for the characterization of antibodies. Biotechniques 33, S54–S61 (2002)

    Google Scholar 

  15. Woodruff, K., Fidalgo, L.M., Gobaa, S., Lutolf, M.P., Maerkl, S.J.: Live mammalian cell arrays. Nat. Methods 10, 550–552 (2013)

    Article  CAS  PubMed  Google Scholar 

  16. Ferris, C.J., Gilmore, K.G., Wallace, G.G.: Biofabrication: an overview of the approaches used for printing of living cells. Appl. Microbiol. Biotechnol. 97, 4243–4258 (2013)

    Article  CAS  PubMed  Google Scholar 

  17. Xu, T., Jin, J., Gregory, C., Hickman, J.J., Boland, T.: Biomaterials 26, 93–99 (2005)

    Article  PubMed  Google Scholar 

  18. Ellis, S.R., Ferris, C.J., Gilmore, K.J., Mitchell, T.W., Blanksby, S.J., in het Panhuis, M.: Direct lipid profiling of single cells from inkjet printed microarrays. Anal. Chem. 84, 9679–9683 (2012)

    Article  CAS  PubMed  Google Scholar 

  19. Dell’Aquila, M.E., Masterson, M., Maritato, F., Hinrichs, K.: Influence of oocyte collection technique on initial chromatin configuration, meiotic competence, and male pronucleus formation after intracytoplasmic sperm injection (ICSI) of equine oocytes. Mol. Reprod. Dev. 60, 79–88 (2001)

    Article  PubMed  Google Scholar 

  20. Sutton-McDowall, M.L., Gilchrist, R.B., Thompson, J.G.: The pivotal role of glucose metabolism in determining oocyte developmental competence. Reproduction 139, 685–695 (2010)

    Article  CAS  PubMed  Google Scholar 

  21. Sanbuissho, A., Lee, G.Y., Anderson, E.: Functional and ultrastructural characteristics of two types of rat granulosa cell cultured in the presence of FSH or transforming growth factor alpha (TGF-alpha). J. Reprod. Fertil. 98, 367–376 (1993)

    Article  CAS  PubMed  Google Scholar 

  22. Centurione, L., Giampietro, F., Sancilio, S., Piccirilli, M., Artese, L., Tiboni, G.M., Di Pietro, R.: Morphometric and ultrastructural analysis of human granulosa cells after gonadotrophin-releasing hormone agonist or antagonist. Reprod. Biomed. Online 20, 625–633 (2010)

    Article  CAS  PubMed  Google Scholar 

  23. Kročková, J., Massányi, P., Sirotkin, A.V., Lukáč, N., Kováčik, A.: Nickel-induced structural and functional alterations in porcine granulosa cells in vitro. Biol. Trace Elem. Res. 154, 190–195 (2013)

    Article  PubMed  Google Scholar 

  24. Lange-Consiglio, A., Accogli, G., Cremonesi, F., Desantis, S.: Cell surface glycan changes in the spontaneous epithelial-mesenchymal transition of equine amniotic multipotent progenitor cells. Cells Tissues Organs 200, 212–226 (2014)

    Article  CAS  PubMed  Google Scholar 

  25. Stanley, P., Schachter, H., Taniguchi, N.: N-Glycans. In: Varki, A., et al. (eds.) Essentials of Glycobiology, IIth edn, pp. 101–114. Cold Spring Harbor Laboratory Press, New York (2009)

    Google Scholar 

  26. Brockhausen, I., Schachter, H., Stanley, P.: O-GalNAc glycans. In: Varki, A., et al. (eds.) Essentials of Glycobiology, IIth edn, pp. 105–127. Cold Spring Harbor Laboratory Press, New York (2009)

    Google Scholar 

  27. Varki, A., Schauer, R.: Sialic acids. In: Varki, A., et al. (eds.) Essentials of Glycobiology, IIth edn, pp. 199–217. Cold Spring Harbor Laboratory Press, New York (2009)

    Google Scholar 

  28. Matsuda, F., Inoue, N., Manabe, N., Ohkura, S.: Follicular growth and atresia in mammalian ovaries: regulation by survival and death of granulosa cells. J. Reprod. Dev. 58, 44–50 (2012)

    Article  CAS  PubMed  Google Scholar 

  29. Kottarathil, V.D., Antony, M.A., Nair, I.R., Pavithran, K.: Recent advances in granulosa cell tumor ovary: a review. Indian J. Surg. Oncol. 4, 37–47 (2013)

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Slovak Research and Development Agency under the contract No. APVV-14-0753 and by the Slovak Scientific Grant Agency VEGA project No. 2/0162/14. This document was partially funded by the University of Bari “Aldo Moro”, Italy. Dr. N.A. Martino and Dr. G. Accogli were granted by the project ONEV (Omica e Nanotecnologie applicate agli Esseri Viventi per la diagnosi di malattie) MIUR PONa3 00134–n.254/R&C 18/05/2011 (2013–2014) and Dr. N.A. Martino was granted by the project GR-2011-02351396 (Ministry of Health, Young Researchers Grant 2011/2012), “OMICS biomarkers of xenobiotic- and radiation-induced ovarian failure in farm animals - Impact on animal production and translational research for human reproductive medicine” (2015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaroslav Katrlík.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Accogli, G., Desantis, S., Martino, N.A. et al. A lectin-based cell microarray approach to analyze the mammalian granulosa cell surface glycosylation profile. Glycoconj J 33, 717–724 (2016). https://doi.org/10.1007/s10719-016-9666-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-016-9666-2

Keywords

Navigation