Skip to main content
Log in

Enzymatic synthesis of lactosylated and sialylated derivatives of epothilone A

  • Original Article
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Epothilone A is a derivative of 16-membered polyketide natural product, which has comparable chemotherapeutic effect like taxol. Introduction of sialic acids to these chemotherapeutic agents could generate interesting therapeutic glycoconjugates with significant effects in clinical studies. Since, most of the organisms biosynthesize sialic acids in their cell surface, they are key mediators in cellular events (cell-cell recognition, cell-matrix interactions). Interaction between such therapeutic sugar parts and cellular polysaccharides could generate interesting result in drugs like epothilone A. Based on this hypothesis, epothilone A glucoside (epothilone A 6-O-β-D-glucoside) was further decorated by conjugating enzymatically galactose followed by sialic acids to generate epothilone A 7-O-β-D-glucopyranosyl, 4′-O-α-D-galactoside i.e., lactosyl epothilone A (lac epoA) and two sialosides of epothilone A namely epothilone A 7-O-β-D-glucopyranosyl, 4′-O-α-D-galactopyranosyl 3″-O-α-N-acetyl neuraminic acid and epothilone A 7-O-β-D-glucopyranosyl, 4′-O-α-D-galactopyranosyl 6″-O-α-N-acetylneuraminic acid i.e., 3′sialyllactosyl epothilone A: 3′SL-epoA, and 6′sialyllactosyl epothilone A: 6′SL-epoA, respectively. These synthesized analogs were spectroscopically analyzed and elucidated, and biologically validated using HUVEC and HCT116 cancer cell lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Akbari, V., Moghim, S., Reza, M.M.: Comparision of epothilone and taxol binding in yeast tubulin using molecular modeling. Avicenna J. Med. Biotechnol. 3, 167–175 (2001)

    Google Scholar 

  2. Jordan, M.A., Wilson, L.: Microtubules as a target for anticancer drugs. Nat. Rev. Cancer 4, 253–265 (2004)

    Article  CAS  PubMed  Google Scholar 

  3. He, L., Orr, G.A., Horitz, S.B.: Novel molecules that interact with microtubules and have functional activity similar to Taxol. Drug Discov. Today 6, 1153–1164 (2001)

    Article  CAS  PubMed  Google Scholar 

  4. Shi, G., Wang, Y., Jin, Y., Chi, S., Shi, Q., Ge, M., Wang, S., Zhang, X., Xu, S.: Structural insight into the mechanism of epothilone A bound to beta-tubulin and its mutants at Arg282Gln and Thr274lle. J. Biomol. Struct. Dyn. 30, 559–573 (2002)

    Article  Google Scholar 

  5. Rogalska, A., Marczak, A., Gajek, A., Swed, M., Sliwinska, A., Drzewoski, J., Jozwiak, Z.: Induction of apoptosis in human ovarian cancer cells by new anticancer compounds, epothilone A and B. Toxicol. In Vitro 27, 239–249 (2013)

    Article  CAS  PubMed  Google Scholar 

  6. Altmann, K.H., Pfeiffer, B., Arseniyadis, S., Pratt, B.A., Nicolaou, K.C.: The chemistry and biology of epothilones- the wheel keeps turning. ChemMedChem 2, 396–423 (2007)

    Article  CAS  PubMed  Google Scholar 

  7. Bollag, D.M., McQueney, P.A., Zhu, J., Hensens, O., Koupal, L., Liesch, J., Goetz, M., Lazarides, E., Woods, C.M.: Epothilones, a new class of microtubule-stabilizing agents with a taxol-like mechanism of action. Cancer Res. 55, 2325–2333 (1995)

    CAS  PubMed  Google Scholar 

  8. Brabec, V., Kasparkova, J.: Modifications of DNA by platinum complexes. Relation to resistance of tumors to platinum antitumor drugs. Drug Resist. Updat. 8, 131–146 (2005)

    Article  CAS  PubMed  Google Scholar 

  9. Xie, X.K., Yang, D.S., Ye, Z.M., Tao, H.M.: Enhancement effect of adenovirus-mediated antisense c-myc and caffeine on the cytotoxicity of cisplatin in osteosarcoma cell lines. Chemotherapy 55, 433–440 (2008)

    Article  Google Scholar 

  10. Tanaka, M., Kataoka, H., Mabuchi, M., Sakuma, S., Takahishi, S., Tujii, R., Akashi, H., Ohi, H., Yano, S., Morita, A., Joh, T.: Anticancer effects of novel photodynamic therapy with glycoconjugated chlorin for gastric and colon cancer. Anticancer Res. 31, 763–769 (2011)

    CAS  PubMed  Google Scholar 

  11. Tanaka, M., Kataoka, H., Yano, S., Ohi, H., Kawamoto, K., Shibahara, T., Mizoshita, T., Mori, Y., Tanida, S., Kamiya, T., Joh, T.: Anti-cancer effects of newly developed chemotherapeutic agent, glycoconjugated palladium (II) complex, against cisplatin-resistant gastric cancer cells. BMC Cancer 13, 237 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tiwari, V.K., Mishra, R.C., Sharma, A., Tripathi, R.P.: Carbohydrate based potential chemotherapeutic agents: recent developments and their scope in future drug discovery. Mini. Rev. Med. Chem. 12, 1497–519 (2012)

    Article  CAS  PubMed  Google Scholar 

  13. Traving, C., Schauer, R.: Structure, function and metabolism of sialic acids. Cell. Mol. Life Sci. 54, 1330–1349 (1998)

    Article  CAS  PubMed  Google Scholar 

  14. Yu, H., Chokhwala, H.A., Huang, S., Chen, X.: One-pot three-enzyme chemoenzymatic approach to the synthesis of sialosides containing natural and non-natural functionalities. Nat. Protoc. 1, 2485–2492 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Varki, A., Schauer, R., Sialic acids. In: Verki, A., Cummings, R. D., Esko, J. D.; et al.: editors. Essentials of glycobiology. 2nd edition. Cold Spring Harbor (NY): Cold Spring Harbor Laboratory Press; 2009. Chapter 14. Available from: http://www.ncbi.nlm.nih.gov/books/NBK1920/

  16. Parajuli, P., Pandey, R.P., Koirala, N., Yoon, Y.J., Kim, B.G., Sohng, J.K.: Enzymatic synthesis of epothilone A glycosides. AMB Express 4, 31 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  17. Choi, Y.H., Kim, J.H., Park, J.H., Lee, N., Kim, D.H., Jang, K.S., Park, I.H., Kim, B.G.: Protein engineering of α2,3/2,6-sialyltransferase to improve the yield and productivity of in vitro sialyllactose synthesis. Glycobiology 24, 159–169 (2014)

    Article  CAS  PubMed  Google Scholar 

  18. Oh, T.J., Kim, D.H., Kang, S.Y., Yamaguchi, T., Sohng, J.K.: Enzymatic synthesis of vancomycin derivatives using galactosyltransferase and sialyltransferase. J. Antibiot (Tokyo) 64, 103–109 (2011)

    Article  CAS  Google Scholar 

  19. Parajuli, P., Pandey, R.P., Pokhrel, A.R., Ghimire, G.P., Sohng, J.K.: Enzymatic glycosylation of the topical antibiotics mupirocin. Glycoconj. J. 31, 563–572 (2014)

    Article  CAS  PubMed  Google Scholar 

  20. Pandey, R.P., Gurung, R.B., Parajuli, P., Koirala, N., le Tuoi, T., Sohng, J.K.: Assessing acceptor substrate promiscuity of YjiC-mediated glycosylation towards flavonoids. Carbohydr. Res. 393, 26–31 (2014)

    Article  CAS  PubMed  Google Scholar 

  21. Pandey, R.P., Parajuli, P., Koirala, N., Park, J.W., Sohng, J.K.: Probing 3-hydroxyflavone for in vitro glycorandomization of flavonols by YjiC. Appl. Environ. Microbiol. 79, 6833–6838 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Antoine, T., Priem, B., Heyraud, A., Greffe, L., Gilbert, M., Wakarchuk, W.W., Lam, J.S., Samain, E.: Large-scale in vivo synthesis of the carbohydrate moieties of gangliosides GM1 and GM2 by metabolically engineered Escherichia coli. Chembiochem 4, 406–412 (2003)

    Article  CAS  PubMed  Google Scholar 

  23. Wang, J., Zhang, H., Ying, L., Wang, C., Jiang, N., Zhou, Y., Wang, H., Bai, H.: Five new epothilone metabolites from Sorangium cellulosum strain So0157-2. J. Antibiot (Tokyo) 62, 483–487 (2009)

    Article  CAS  Google Scholar 

  24. Park, H.J., Zhang, Y., Georgescu, S.P., Johnson, K.L., Kong, D., Galper, J.B.: Human umbilical vein endothelial cells and human dermal microvascular endothelial cells offer new insight into the relationship between lipid metabolism and angiogenesis. Stem Cell Rev. 2, 93–102 (2006)

    Article  CAS  PubMed  Google Scholar 

  25. Raiput, A., Dominquez San Martin, I., Rose, R., Beko, A., Levea, C., Sharratt, E., Mazurchuk, R., Hoffman, R.M., Brottain, M.G., Wang, J.J.: Characterization of HCT116 human colon cancer cells in an orthotopic model. Surg. Res. 147, 276–281 (2008)

    Article  Google Scholar 

  26. Cazet, A., Julien, S., Bobowski, M., Krzewinski-Recchi, M.A., Harduin-Lepers, A., Groux-Degroote, S., Delannoy, P.: Consequences of the expression of sialylated antigens in breast cancer. Carbohydr. Res. 345, 1377–1388 (2010)

    Article  CAS  PubMed  Google Scholar 

  27. Audry, M., Jeanneau, C., Imberty, A., Harduin-Lepers, A., Delannoy, P., Breton, C.: Current trends in the structure-activity relationships of sialyltransferases. Glycobiology 21, 716–726 (2010)

    Article  PubMed  Google Scholar 

  28. Cheng, H., Cao, X., Xian, M., Cai, T.B., Ji, J.J., Tunac, J.B., Sun, D., Wang, P.G.: Synthesis and enzyme-specific activation of carbohydrate-geldanamycin conjugates with potent anticancer activity. J. Med. Chem. 48, 645–652 (2005)

    Article  CAS  PubMed  Google Scholar 

  29. Schulte, T.W., Akinaga, S., Soga, S., Sullivan, W., Stensgard, B., Toft, D., Neckers, L.M.: Antibiotic radicicol binds to the N-terminal domain of HSP90 and shares important biologic activities with geldanamycin. Cell Stress Chaperones 3, 100–108 (1998)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Vahdat, L. T.: Slinical studies with epothlones for the treatment of metastatic breast cancer. Semin. Oncol. 35, S22-30

  31. Heuser, E., Lipp, K., Wiegandt, H.: Detection of sialic acid containing compounds and the behavior of gangliosides in polyacrylamide disc electrophoresis. Anal. Biochem. 60, 382–388 (1974)

    Article  CAS  PubMed  Google Scholar 

  32. Bisel, B., Pavone, F.S., Calamai, M.: GM1 and GM2 gangliosides: recent developments. Biomol. Concepts. 5, 87–93 (2014)

    Article  CAS  PubMed  Google Scholar 

  33. Bagriacik, E.U., Miller, K.S.: Cell surface sialic acid and the regulation of immunie cell interactions: the neuraminidase effect reconsidered. Glycobiology 3, 267–275 (1999)

    Article  Google Scholar 

  34. Varki, A., Gagneux, P.: Multifarious roles of sialic acids in immnity. Ann. N. Y. Acad. Sci. 1253, 16–36 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang, B., Brand-Miller, J.: The role and potential of sialic acid in human nutrition. Eur. J. Clin. Nutr. 57, 1351–1369 (2003)

    Article  CAS  PubMed  Google Scholar 

  36. Hata, K., Koseki, K., Yamaguchi, K., Moriya, S., Suzuki, Y., Yingsakmongkon, S., Hirai, G., Sodeoka, M., von Itzstein, M., Miyagi, T.: Limited inhibitory effects of oseltamivir and zanamivir on human sialidases. Antimicrob. Agents Chemother. 52, 3484–3481 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cowan, C. B., Patel, D.A., Good, T. A.: Exploring the mechanism of beta-amyloid toxicity attenuation by multivalent sialic acid polymers through the use of mathematical models. J. Theor. Biol. 258, 189–197

Download references

Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (NRF-2014R1A2A2A01002875).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae Kyung Sohng.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 20066 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parajuli, P., Pandey, R.P., Gurung, R.B. et al. Enzymatic synthesis of lactosylated and sialylated derivatives of epothilone A. Glycoconj J 33, 137–146 (2016). https://doi.org/10.1007/s10719-015-9646-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-015-9646-y

Keywords

Navigation