Skip to main content
Log in

Carbohydrate-binding activities of coagulation factors fibrinogen and fibrin

  • Original Article
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

The coagulation factors fibrinogen and fibrin play important roles in the final stage of the blood coagulation cascade. It has not been revealed whether fibrinogen has lectin activity or not. Here we demonstrate that fibrinogen and fibrin have carbohydrate-specific binding activities that inhibit fibrin clot formation. A solid-phase binding study using sugar-biotinyl polymer probes revealed that fibrinogen has the highest affinity to mannose (Man) in both the presence and absence of 5 mM Ca2+. Fibrin, which is proteolytically produced from fibrinogen by thrombin, binds to the same sugar residues as fibrinogen in the presence of 5 mM Ca2+, while it markedly binds to N-acetylneuraminic acid in the absence of Ca2+. Thrombin-induced fibrin polymerization was monitored by turbidity at 350 nm. In the presence of Ca2+, Man and sugars having N-acetyl groups were found to inhibit the increase in turbidity, but only Man inhibited it in the absence of Ca2+. Scanning electron microscopy observation of fibrin clots formed in the presence of various sugars showed that fibrin fibers formed in the presence of Man and N-acetyl group sugars were thinner and more branched. In contrast, thrombin has neither carbohydrate-binding activity nor is affected by sugars. These results suggest that carbohydrates and glycoconjugates may regulate fibrin clot formation in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

TBS:

20 mM Tris buffer, pH 7.4, containing 0.15 M NaCl

TBS+Ca2+ :

TBS containing 5 mM CaCl2

TBS+EDTA:

TBS containing 5 mM EDTA

TBS+EGTA:

TBS containing 5 mM EGTA

PBS:

10 mM phosphate buffered saline, pH 7.5

Sugar-BP:

Sugar-biotinyl polymer

DL-BAPA:

Benzoyl-DL-arginine p-nitroanilide hydrochloride

SEM:

Scanning electron microscopy

References

  1. Mirshahi, M., Soria, J., Soria, C., Bertrand, O., Mirshahi, M., Basdevant, A.: Glycosylation of human fibrinogen and fibrin in vitro. Its consequences on the properties of fibrin(ogen). Thromb Res 48(3), 279–289 (1987)

    Article  CAS  PubMed  Google Scholar 

  2. Yakovlev, S., Gorlatov, S., Ingham, K., Medved, L.: Interaction of fibrin(ogen) with heparin: further characterization and localization of the heparin-binding site. Biochemistry 42(25), 7709–7716 (2003). doi:10.1021/bi0344073

    Article  CAS  PubMed  Google Scholar 

  3. LeBoeuf, R.D., Raja, R.H., Fuller, G.M., Weigel, P.H.: Human fibrinogen specifically binds hyaluronic acid. J. Biol. Chem. 261(27), 12586–12592 (1986)

    CAS  PubMed  Google Scholar 

  4. Ryan, E.A., Mockros, L.F., Weisel, J.W., Lorand, L.: Structural origins of fibrin clot rheology. Biophys. J. 77(5), 2813–2826 (1999)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Takekawa, H., Ina, C., Sato, R., Toma, K., Ogawa, H.: Novel carbohydrate-binding activity of pancreatic trypsins to N-linked glycans of glycoproteins. J. Biol. Chem. 281(13), 8528–8538 (2006). doi:10.1074/jbc.M513773200

    Article  CAS  PubMed  Google Scholar 

  6. Makogonenko, E., Tsurupa, G., Ingham, K., Medved, L.: Interaction of fibrin(ogen) with fibronectin: further characterization and localization of the fibronectin-binding site. Biochemistry 41(25), 7907–7913 (2002). doi:10.1021/bi025770x

  7. Niwa, K., Mimuro, J., Miyata, M., Sugo, T., Ohmori, T., Madoiwa, S., Tei, C., Sakata, Y.: Dysfibrinogen Kagoshima with the amino acid substitution gammaThr-314 to Ile: analyses of molecular abnormalities and thrombophilic nature of this abnormal molecule. Thromb. Res. 121(6), 773–780 (2008). doi:10.1016/j.thromres.2007.07.007

    Article  CAS  PubMed  Google Scholar 

  8. Akihama, S., Matsuda, Y., Fukase, T., Yamanaka, A., Okude, M.: Participation of sialic acid residue in the fibrinogen-fibrin conversion by thrombin. Yakugaku Zasshi 115(7), 537–542 (1995)

    CAS  PubMed  Google Scholar 

  9. Laemmli, U.K.: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227(5259), 680–685 (1970)

    Article  CAS  PubMed  Google Scholar 

  10. Siebenlist, K.R., Mosesson, M.W., Hernandez, I., Bush, L.A., Di Cera, E., Shainoff, J.R., Di Orio, J.P., Stojanovic, L.: Studies on the basis for the properties of fibrin produced from fibrinogen-containing gamma’ chains. Blood 106(8), 2730–2736 (2005). doi:10.1182/blood-2005-01-0240

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Cooper, A.V., Standeven, K.F., Ariens, R.A.: Fibrinogen gamma-chain splice variant gamma’ alters fibrin formation and structure. Blood 102(2), 535–540 (2003). doi:10.1182/blood-2002-10-3150

    Article  CAS  PubMed  Google Scholar 

  12. Ono, S.: Gene duplication, mutation load, and mammalian genetic regulatory systems. J. Med. Genet. 9(3), 254–263 (1972)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Standeven, K.F., Ariens, R.A., Grant, P.J.: The molecular physiology and pathology of fibrin structure/function. Blood Rev. 19(5), 275–288 (2005). doi:10.1016/j.blre.2005.01.003

    Article  CAS  PubMed  Google Scholar 

  14. Weisel, J.W., Litvinov, R.I.: Mechanisms of fibrin polymerization and clinical implications. Blood 121(10), 1712–1719 (2013). doi:10.1182/blood-2012-09-306639

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Okude, M., Yamanaka, A., Morimoto, Y., Akihama, S.: Sialic acid in fibrinogen: effects of sialic acid on fibrinogen-fibrin conversion by thrombin and properties of asialofibrin clot. Biol. Pharm. Bull. 16(5), 448–452 (1993)

    Article  CAS  PubMed  Google Scholar 

  16. Boyer, M.H., Shainoff, J.R., Ratnoff, O.D.: Acceleration of fibrin polymerization by calcium ions. Blood 39(3), 382–387 (1972)

    CAS  PubMed  Google Scholar 

  17. Alton, G., Kjaergaard, S., Etchison, J.R., Skovby, F., Freeze, H.H.: Oral ingestion of mannose elevates blood mannose levels: a first step toward a potential therapy for carbohydrate-deficient glycoprotein syndrome type I. Biochem. Mol. Med. 60(2), 127–133 (1997)

    Article  CAS  PubMed  Google Scholar 

  18. Taguchi, T., Miwa, I., Mizutani, T., Nakajima, H., Fukumura, Y., Kobayashi, I., Yabuuchi, M., Miwa, I.: Determination of D-mannose in plasma by HPLC. Clin. Chem. 49(1), 181–183 (2003)

    Article  CAS  PubMed  Google Scholar 

  19. Soedamah-Muthu, S.S., Chaturvedi, N., Pickup, J.C., Fuller, J.H., Group, E.P.C.S.: Relationship between plasma sialic acid and fibrinogen concentration and incident micro- and macrovascular complications in type 1 diabetes. The EURODIAB Prospective Complications Study (PCS). Diabetologia 51(3), 493–501 (2008). doi:10.1007/s00125-007-0905-8

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Gray, E., Hogwood, J., Mulloy, B.: The anticoagulant and antithrombotic mechanisms of heparin. Handb. Exp. Pharmacol. (207), 43–61 (2012). doi:10.1007/978-3-642-23056-1_3

  21. LeBoeuf, R.D., Gregg, R.R., Weigel, P.H., Fuller, G.M.: Effects of hyaluronic acid and other glycosaminoglycans on fibrin polymer formation. Biochemistry 26(19), 6052–6057 (1987)

    Article  CAS  PubMed  Google Scholar 

  22. Kunicki, T.J.: Platelet membrane glycoproteins and their function: an overview. Blut 59(1), 30–34 (1989)

    Article  CAS  PubMed  Google Scholar 

  23. Morris, T.A., Marsh, J.J., Chiles, P.G., Kim, N.H., Noskovack, K.J., Magana, M.M., Gruppo, R.A., Woods Jr., V.L.: Abnormally sialylated fibrinogen gamma-chains in a patient with chronic thromboembolic pulmonary hypertension. Thromb. Res. 119(2), 257–259 (2007). doi:10.1016/j.thromres.2006.02.010

    Article  CAS  PubMed  Google Scholar 

  24. Pieters, M., Covic, N., van der Westhuizen, F.H., Nagaswami, C., Baras, Y., Toit Loots, D., Jerling, J.C., Elgar, D., Edmondson, K.S., van Zyl, D.G., Rheeder, P., Weisel, J.W.: Glycaemic control improves fibrin network characteristics in type 2 diabetes - a purified fibrinogen model. Thromb. Haemost. 99(4), 691–700 (2008). doi:10.1160/TH07-11-0699

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haruko Ogawa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Date, K., Ohyama, M. & Ogawa, H. Carbohydrate-binding activities of coagulation factors fibrinogen and fibrin. Glycoconj J 32, 385–392 (2015). https://doi.org/10.1007/s10719-015-9603-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-015-9603-9

Keywords

Navigation