Skip to main content
Log in

Evolutionary diversity of social amoebae N-glycomes may support interspecific autonomy

  • Original Article
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Multiple species of cellular slime mold (CSM) amoebae share overlapping subterranean environments near the soil surface. Despite similar life-styles, individual species form independent starvation-induced fruiting bodies whose spores can renew the life cycle. N-glycans associated with the cell surface glycocalyx have been predicted to contribute to interspecific avoidance, resistance to pathogens, and prey preference. N-glycans from five CSM species that diverged 300–600 million years ago and whose genomes have been sequenced were fractionated into neutral and acidic pools and profiled by MALDI-TOF-MS. Glycan structure models were refined using linkage specific antibodies, exoglycosidase digestions, MALDI-MS/MS, and chromatographic studies. Amoebae of the type species Dictyostelium discoideum express modestly trimmed high mannose N-glycans variably modified with core α3-linked Fuc and peripherally decorated with 0–2 residues each of β-GlcNAc, Fuc, methylphosphate and/or sulfate, as reported previously. Comparative analyses of D. purpureum, D. fasciculatum, Polysphondylium pallidum, and Actyostelium subglobosum revealed that each displays a distinctive spectrum of high-mannose species with quantitative variations in the extent of these modifications, and qualitative differences including retention of Glc, mannose methylation, and absence of a peripheral GlcNAc, fucosylation, or sulfation. Starvation-induced development modifies the pattern in all species but, except for universally observed increased mannose-trimming, the N-glycans do not converge to a common profile. Correlations with glycogene repertoires will enable future reverse genetic studies to eliminate N-glycomic differences to test their functions in interspecific relations and pathogen evasion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

2-AB:

2-aminobenzamide

ACN:

Acetonitrile

CSM:

Cellular slime mold

DTT:

Dithiothreitol

H8N4F:

Notation for a glycan containing 8 hexoses, 4 HexNAc residues, and 1 deoxyHex expected to be fucose

TFA:

Trifluoroacetic acid

References

  1. Schaap, P.: Evolutionary crossroads in developmental biology: Dictyostelium discoideum. Development 138, 387–396 (2011)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Heidel, A.J., Lawal, H.M., Felder, M., Schilde, C., Helps, N.R., Tunggal, B., Rivero, F., John, U., Schleicher, M., Eichinger, L., Platzer, M., Noegel, A.A., Schaap, P., Glöckner, G.: Phylogeny-wide analysis of social amoeba genomes highlights ancient origins for complex intercellular communication. Genome Res. 21, 1882–1891 (2011)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Sucgang, R., Kuo, A., Tian, X., Salerno, W., Parikh, A., Feasley, C.L., Dalin, E., Tu, H., Huang, E., Barry, K., Lindquist, E., Shapiro, H., Bruce, D., Schmutz, J., Salamov, A., Fey, P., Gaudet, P., Anjard, C., Babu, M.M., Basu, S., Bushmanova, Y., van der Wel, H., Katoh-Kurasawa, M., Dinh, C., Coutinho, P.M., Saito, T., Elias, M., Schaap, P., Kay, R.R., Henrissat, B., Eichinger, L., Rivero, F., Putnam, N.H., West, C.M., Loomis, W.F., Chisholm, R.L., Shaulsky, G., Strassmann, J.E., Queller, D.C., Kuspa, A., Grigoriev, I.V.: Comparative genomics of the social amoebae Dictyostelium discoideum and Dictyostelium purpureum. Genome Biol. 12, R20 (2011)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Dykstra, M.J., Aldrich, H.C.: Successful demonstration of an elusive cell coat in amebae. J. Protozool. 25, 38–41 (1978)

    Article  CAS  PubMed  Google Scholar 

  5. Freeze, H.H.: Dictyostelium discoideum glycoproteins: using a model system for organismic glycobiology. In: Glycoproteins II. Eds.: Montreuil, J.F.G. Vliegenthart and H. Schachter, Elsevier Science B.V. pp. 89–121 (1997)

  6. Feasley, C.L., Johnson, J.M., West, C.M., Chia, C.P.: Glycopeptidome of a heavily N-glycosylated cell surface glycoprotein of Dictyostelium implicated in cell adhesion. J. Proteome Res. 9, 3495–3510 (2010)

    Article  CAS  PubMed  Google Scholar 

  7. Schiller, B., Hykollari, A., Voglmeir, J., Pöltl, G., Hummel, K., Razzazi-Fazeli, E., Geyer, R., Wilson, I.B.: Development of Dictyostelium discoideum is associated with alteration of fucosylated N-glycan structures. Biochem. J. 423, 41–52 (2009)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Hykollari, A., Balog, C.I., Rendić, D., Braulke, T., Wilson, I.B., Paschinger, K.: Mass spectrometric analysis of neutral and anionic N-glycans from a Dictyostelium discoideum model for human congenital disorder of glycosylation CDG IL. J. Proteome Res. 12, 1173–1187 (2013)

  9. Sharkey, D.J., Kornfeld, R.: Developmental regulation of asparagine linked oligosaccharide synthesis in Dictyostelium discoideum. J. Biol. Chem. 266, 18485–18497 (1991)

    CAS  PubMed  Google Scholar 

  10. Nicol, A., Garrod, D.R.: Mutual cohesion and cell sorting-out among four species of cellular slime moulds. J. Cell Sci. 32, 377–387 (1978)

    CAS  PubMed  Google Scholar 

  11. Sathe, S., Khetan, N., Nanjundiah, V.: Interspecies and intraspecies interactions in social amoebae. J. Evol. Biol. 27, 349–362 (2014)

    Article  CAS  PubMed  Google Scholar 

  12. Nasser, W., Santhanam, B., Miranda, E.R., Parikh, A., Juneja, K., Rot, G., Dinh, C., Chen, R., Zupan, B., Shaulsky, G., Kuspa, A.: Bacterial discrimination by dictyostelid amoebae reveals the complexity of ancient interspecies interactions. Curr. Biol. 23, 862–872 (2013)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Champion, A., Griffiths, K., Gooley, A.A., Gonzalez, B.Y., Gritzali, M., West, C.M., Williams, K.L.: Immunochemical, genetic and morphological comparison of fucosylation mutants of Dictyostelium discoideum. Microbiology 141, 785–797 (1995)

    Article  CAS  PubMed  Google Scholar 

  14. Houle, J., Balthazar, J., West, C.M.: A glycosylation mutation affects cell fate in chimeras of Dictyostelium discoideum. Proc. Natl. Acad. Sci. U. S. A. 86, 3679–3683 (1989)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. West, C.M.: Comparative analysis of spore coat formation, structure, and function in Dictyostelium. Int. Rev. Cytol. 222, 237–293 (2003)

    Article  PubMed  Google Scholar 

  16. Wang, F., Metcalf, T., van der Wel, H., West, C.M.: Initiation of mucin-type O-glycosylation in Dictyostelium is homologous to the corresponding step in animals and is important for spore coat function. J. Biol. Chem. 278, 51395–51407 (2003)

    Article  CAS  PubMed  Google Scholar 

  17. Bush, J.M., Ebert, D.L., Cardelli, J.A.: Alterations to N-linked oligosaccharides which affect intracellular transport rates and regulated secretion but not sorting of lysosomal acid phosphatase in Dictyostelium discoideum. Arch. Biochem. Biophys. 283, 158–166 (1990)

    Article  CAS  PubMed  Google Scholar 

  18. Souza, G.M., Mehta, D.P., Lammertz, M., Rodriguez-Paris, J., Wu, R., Cardelli, J.A., Freeze, H.H.: Dictyostelium lysosomal proteins with different sugar modifications sort to functionally distinct compartments. J. Cell Sci. 110, 2239–2248 (1997)

    CAS  PubMed  Google Scholar 

  19. West, C.M., Wang, Z.A., van der Wel, H.: A cytoplasmic prolyl hydroxylation and glycosylation pathway modifies Skp1 and regulates O2-dependent development in Dictyostelium. Biochim. Biophys. Acta. 1800, 160–171 (2010)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Zhang, D., van der Wel, H., Johnson, J.M., West, C.M.: Skp1 prolyl 4-hydroxylase of Dictyostelium mediates glycosylation-independent and -dependent responses to O2 without affecting Skp1 stability. J. Biol. Chem. 287, 2006–2016 (2012)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Feasley, C.L., Hykollari, A., Paschinger, K., Wilson, I.B., West, C.M.: N-glycomic and -glycoproteomic studies in the social amoebae. Meth. Mol. Biol. 983, 205–229 (2013)

    Article  CAS  Google Scholar 

  22. Hykollari, A., Dragosits, M., Rendić, D., Wilson, I.B., Paschinger, K.: N-glycomic profiling of a glucosidase II mutant of Dictyostelium discoideum by “off-line“ liquid chromatography and mass spectrometry. Electrophoresis 35, 2116–2129 (2014)

    CAS  PubMed  Google Scholar 

  23. Basu, S., Fey, P., Pandit, Y., Dodson, R., Kibbe, W.A., Chisholm, R.L.: DictyBase 2013: integrating multiple Dictyostelid species. Nucleic Acids Res. 41(Database issue), D676–D683 (2013)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Romeralo, M., Skiba, A., Gonzalez-Voyer, A., Schilde, C., Lawal, H., Kedziora, S., Cavender, J.C., Glöckner, G., Urushihara, H., Schaap, P.: Analysis of phenotypic evolution in Dictyostelia highlights developmental plasticity as a likely consequence of colonial multicellularity. Proc. Biol. Sci. 280, 20130976 (2013)

    Article  PubMed Central  PubMed  Google Scholar 

  25. Fey, P., Kowal, A.S., Gaudet, P., Pilcher, K.E., Chisholm, R.L.: Protocols for growth and development of Dictyostelium discoideum. Nat. Protoc. 2, 1307–1316 (2007)

    Article  CAS  PubMed  Google Scholar 

  26. Kang, P., Mechref, Y., Novotny, M.V.: High-throughput solid-phase permethylation of glycans prior to mass spectrometry. Rapid Commun. Mass Spectrom. 22, 721–734 (2008)

    Article  CAS  PubMed  Google Scholar 

  27. Khoo, K.H., Yu, S.Y.: Mass spectrometric analysis of sulfated N- and O-glycans. Meth. Enzymol. 478, 3–26 (2010)

    Article  CAS  PubMed  Google Scholar 

  28. Damerell, D., Ceroni, A., Maass, K., Ranzinger, R., Dell, A., Haslam, S.M.: The GlycanBuilder and GlycoWorkbench glycoinformatics tools: updates and new developments. Biol. Chem. 393, 1357–1362 (2012)

    Article  CAS  PubMed  Google Scholar 

  29. Barker, M.K., Wilkinson, B.L., Faridmoayer, A., Scaman, C.H., Fairbanks, A.J., Rose, D.R.: Production and crystallization of processing α-glucosidase I: Pichia pastoris expression and a two-step purification toward structural determination. Protein Expr. Purif. 79, 96–101 (2011)

    Article  CAS  PubMed  Google Scholar 

  30. Dhanawansa, R., Faridamoayer, A., van der Merwe, G., Li, Y.X., Scaman, C.H.: Overexpression, purification, and partial characterization of Sacchromyces cerevisiae processing alpha-glucosidase I. Glycobiology 12, 229–234 (2002)

    Article  CAS  PubMed  Google Scholar 

  31. West, C.M., van der Wel, H., Coutinho, P.M., Henrissat, B.: Glycosyltransferase genomics in Dictyostelium discoideum. In: Dictyostelium Genomics. Eds.: Loomis, W.F., and Kuspa, A. (Horizon Scientific Press, Norfolk, UK) pp. 235–264 (2005)

  32. Couso, R., van Halbeek, H., Reinhold, V., Kornfeld, S.: The high mannose oligosaccharides of Dictyostelium discoideum glycoproteins contain a novel intersecting N-acetylglucosamine residue. J. Biol. Chem. 262, 4521–4527 (1987)

    CAS  PubMed  Google Scholar 

  33. Sharkey, D.J., Kornfeld, R.: Identification of an N-acetylglucosaminyltransferase in Dictyostelium discoideum that transfers an intersecting N-acetyl glucosamine residue to high mannose oligosaccharides. J. Biol. Chem. 264, 10411–10419 (1989)

    CAS  PubMed  Google Scholar 

  34. Srikrishna, G., Wang, L., Freeze, H.H.: Fucose-beta-1-P-Ser is a new type of glycosylation: using antibodies to identify a novel structure in Dictyostelium discoideum and study multiple types of fucosylation during growth and development. Glycobiology 8, 799–811 (1998)

    Article  CAS  PubMed  Google Scholar 

  35. Nakagawa, M., Tojo, H., Fujii, S.: A glycan of Psi-factor from Dictyostelium discoideum contains a bisecting-GlcNAc, an intersecting-GlcNAc, and a core α-1,6-fucose. Biosci. Biotechnol. Biochem. 75, 1964–1970 (2011)

    Article  CAS  PubMed  Google Scholar 

  36. Knecht, D.A., Dimond, R.L.: Lysosomal enzymes possess a common antigenic determinant in the cellular slime mold, Dictyostelium discoideum. J. Biol. Chem. 256, 3564–3575 (1981)

    CAS  PubMed  Google Scholar 

  37. Schiller, B., Makrypidi, G., Razzazi-Fazeli, E., Paschinger, K., Walochnik, J., Wilson, I.B.: Exploring the unique N-glycome of the opportunistic human pathogen Acanthamoeba. J. Biol. Chem. 287, 43191–43204 (2012)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Magnelli, P., Cipollo, J.F., Ratner, D.M., Cui, J., Kelleher, D., Gilmore, R., Costello, C.E., Robbins, P.W., Samuelson, J.: Unique Asn-linked oligosaccharides of the human pathogen Entamoeba histolytica. J. Biol. Chem. 283, 18355–18364 (2008)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Buser, R., Lazar, Z., Käser, S., Künzler, M., Aebi, M.: Identification, characterization, and biosynthesis of a novel N-glycan modification in the fruiting body of the basidiomycete Coprinopsis cinerea. J. Biol. Chem. 285, 10715–10723 (2010)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Freeze, H.H., Bush, J.M., Cardelli, J.: Biochemical and genetic analysis of an antigenic determinant found on N-linked oligosaccharides in Dictyostelium. Dev. Genet. 11, 463–472 (1990)

    Article  CAS  PubMed  Google Scholar 

  41. Cardelli, J.A., Bush, J.M., Ebert, D., Freeze, H.H.: Sulfated N-linked oligosaccharides affect secretion but are not essential for the transport, proteolytic processing, and sorting of lysosomal enzymes in Dictyostelium discoideum. J. Biol. Chem. 265, 8847–8853 (1990)

    CAS  PubMed  Google Scholar 

  42. Qian, Y., West, C.M., Kornfeld, S.: UDP-GlcNAc:Glycoprotein N-acetylglucosamine-1-phosphotransferase mediates the initial step in the formation of the methylphosphomannosyl residues on the high mannose oligosaccharides of Dictyostelium discoideum glycoproteins. Biochem. Biophys. Res. Commun. 393, 678–681 (2011)

    Article  Google Scholar 

  43. Cipollo, J.F., Awad, A.M., Costello, C.E., Hirschberg, C.B.: N-Glycans of Caenorhabditis elegans are specific to developmental stages. J. Biol. Chem. 280, 26063–26072 (2005)

    Article  CAS  PubMed  Google Scholar 

  44. Gutternigg, M., Bürgmayr, S., Pöltl, G., Rudolf, J., Staudacher, E.: Neutral N-glycan patterns of the gastropods Limax maximus, Cepaea hortensis, Planorbarius corneus, Arianta arbustorum and Achatina fulica. Glycoconj. J. 24, 475–489 (2007)

    Article  CAS  PubMed  Google Scholar 

  45. Banerjee, S., Vishwanath, P., Cui, J., Kelleher, D.J., Gilmore, R., Robbins, P.W., Samuelson, J.: The evolution of N-glycan-dependent endoplasmic reticulum quality control factors for glycoprotein folding and degradation. Proc. Natl. Acad. Sci. U. S. A. 104, 11676–11681 (2007)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Schiller, B., Hykollari, A., Yan, S., Paschinger, K., Wilson, I.B.: Complicated N-linked glycans in simple organisms. Biol. Chem. 393, 661–673 (2012)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Funk, V.A., Thomas-Oates, J.E., Kielland, S.L., Bates, P.A., Olafson, R.W.: A unique, terminally glucosylated oligosaccharide is a common feature on Leishmania cell surfaces. Mol. Biochem. Parasitol. 84, 33–48 (1997)

    Article  CAS  PubMed  Google Scholar 

  48. Hirose, S., Benabentos, R., Ho, H.I., Kuspa, A., Shaulsky, G.: Self-recognition in social amoebae is mediated by allelic pairs of tiger genes. Science 333, 467–470 (2011)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Clarke, M.: Recent insights into host-pathogen interactions from Dictyostelium. Cell. Microbiol. 12, 283–291 (2010)

    Article  CAS  PubMed  Google Scholar 

  50. Varki, A.: Nothing in glycobiology makes sense, except in the light of evolution. Cell 126, 841–845 (2006)

    Article  CAS  PubMed  Google Scholar 

  51. Brock, D.A., Read, S., Bozhchenko, A., Queller, D.C., Strassmann, J.E.: Social amoeba farmers carry defensive symbionts to protect and privatize their crops. Nat. Commun. 4, 2385 (2013)

    Article  PubMed  Google Scholar 

  52. Erbs, G., Newman, M.A.: The role of lipopolysaccharide and peptidoglycan, two glycosylated bacterial microbe-associated molecular patterns (MAMPs), in plant innate immunity. Mol. Plant Pathol. 13, 95–104 (2012)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This project was partially supported by NIH R01-GM037539 and the OCMG, which received funding from the OUHSC Dept. of Biochemistry & Molecular Biology and the OUHSC VP Office for Research. We are grateful to Jennifer Johnson for her technical assistance, the Dictyostelium Stock Center (Northwestern University) and Adam Kuspa (Baylor) for providing cells, and to Christine Scaman (Univ. of British Columbia) for providing yeast α-glucosidase-I.

Conflict of interest

None declared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher M. West.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 900 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feasley, C.L., van der Wel, H. & West, C.M. Evolutionary diversity of social amoebae N-glycomes may support interspecific autonomy. Glycoconj J 32, 345–359 (2015). https://doi.org/10.1007/s10719-015-9592-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-015-9592-8

Keywords

Navigation