Skip to main content
Log in

A biochemical and physicochemical comparison of two recombinant enzymes used for enzyme replacement therapies of hunter syndrome

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Mucopolysaccharidosis II (MPS II, Hunter syndrome; OMIM 309900) is an X-linked lysosomal storage disease caused by a deficiency in the enzyme iduronate-2-sulfatase (IDS), leading to accumulation of glycosaminoglycans (GAGs). For enzyme replacement therapy (ERT) of Hunter syndrome, two recombinant enzymes, idursulfase (Elaprase®, Shire Human Genetic Therapies, Lexington, MA) and idursulfase beta (Hunterase®, Green Cross Corporation, Yongin, Korea), are currently available in Korea. To compare the biochemical and physicochemical differences between idursulfase and idursulfase beta, we examined the formylglycine (FGly) content, specific enzyme activity, mannose-6-phosphate (M6P) content, sialic acid content, and in vitro cell uptake activity of normal human fibroblasts of these two enzymes.

The FGly content, which determines the enzyme activity, of idursulfase beta was significantly higher than that of idursulfase (79.4 ± 0.9 vs. 68.1 ± 2.2 %, P < 0.001). In accordance with the FGly content, the specific enzyme activity of idursulfase beta was significantly higher than that of idursulfase (42.6 ± 1.1 vs. 27.8 ± 0.9 nmol/min/μg protein, P < 0.001). The levels of M6P and sialic acid were not significantly different (2.4 ± 0.1 vs 2.4 ± 0.3 mol/mol protein for M6P and 12.3 ± 0.7 vs. 12.4 ± 0.4 mol/mol protein for sialic acid). However, the cellular uptake activity of the normal human fibroblasts in vitro showed a significant difference (Kuptake, 5.09 ± 0.96 vs. 6.50 ± 1.28 nM protein, P = 0.017).

In conclusion, idursulfase beta exhibited significantly higher specific enzyme activity than idursulfase, resulting from higher FGly content. These biochemical differences may be partly attributed to clinical efficacy. However, long-term clinical evaluations of Hunter syndrome patients treated with these two enzymes will be needed to demonstrate the clinical implications of significant difference of the enzyme activity and the FGly content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Maurizio, S.: Evaluation of idursulfase for the treatment of mucopolysaccharidosis II (Hunter syndrome). Expert Opin Orphan Drugs 1(1), 89–98 (2013)

    Article  Google Scholar 

  2. Neufeld, E.F., Muenzer, J.: The mucopolysaccharidoses. In: Scriver, C.R. (ed.) The metabolic and molecular bases of inherited disease, pp. 3421–52. McGraw-Hill, New York (2001)

    Google Scholar 

  3. Lee, H., Graham Jr., J.M., Rimoin, D.L., Lachman, R.S., Krejci, P., Tompson, S.W., Nelson, S.F., Krakow, D., Cohn, D.H.: Exome sequencing identifies PDE4D mutations in acrodysostosis. Am J Hum Genet 90(4), 746–751 (2012). doi:10.1016/j.ajhg.2012.03.004

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Jones, S.A., Almassy, Z., Beck, M., Burt, K., Clarke, J.T., Giugliani, R., Hendriksz, C., Kroepfl, T., Lavery, L., Lin, S.P., Malm, G., Ramaswami, U., Tincheva, R., Wraith, J.E.: Mortality and cause of death in mucopolysaccharidosis type II-a historical review based on data from the hunter outcome survey (HOS). J Inherit Metab Dis 32(4), 534–543 (2009). doi:10.1007/s10545-009-1119-7

    Article  CAS  PubMed  Google Scholar 

  5. Martin, R., Beck, M., Eng, C., Giugliani, R., Harmatz, P., Munoz, V., Muenzer, J.: Recognition and diagnosis of mucopolysaccharidosis II (Hunter syndrome). Pediatrics 121(2), e377–386 (2008). doi:10.1542/peds.2007-1350

    Article  PubMed  Google Scholar 

  6. Young, I.D., Harper, P.S., Archer, I.M., Newcombe, R.G.: A clinical and genetic study of Hunter’s syndrome. 1. Heterogeneity. J Med Genet 19(6), 401–407 (1982)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Sohn, Y.B., Cho, S.Y., Park, S.W., Kim, S.J., Ko, A.R., Kwon, E.K., Han, S.J., Jin, D.K.: Phase I/II clinical trial of enzyme replacement therapy with idursulfase beta in patients with mucopolysaccharidosis II (Hunter syndrome). Orphanet J Rare Dis 8, 42 (2013). doi:10.1186/1750-1172-8-42

    Article  PubMed Central  PubMed  Google Scholar 

  8. Muenzer, J., Gucsavas-Calikoglu, M., McCandless, S.E., Schuetz, T.J., Kimura, A.: A phase I/II clinical trial of enzyme replacement therapy in mucopolysaccharidosis II (Hunter syndrome). Mol Genet Metab 90(3), 329–337 (2007). doi:10.1016/j.ymgme.2006.09.001

    Article  CAS  PubMed  Google Scholar 

  9. Muenzer, J., Wraith, J.E., Beck, M., Giugliani, R., Harmatz, P., Eng, C.M., Vellodi, A., Martin, R., Ramaswami, U., Gucsavas-Calikoglu, M., Vijayaraghavan, S., Wendt, S., Puga, A.C., Ulbrich, B., Shinawi, M., Cleary, M., Piper, D., Conway, A.M., Kimura, A.: A phase II/III clinical study of enzyme replacement therapy with idursulfase in mucopolysaccharidosis II (Hunter syndrome). Genet Med Off J Am Coll Med Genet 8(8), 465–473 (2006). doi:10.1097/01.gim.0000232477.37660.fb

    CAS  Google Scholar 

  10. Archer, I.M., Harper, P.S., Wusteman, F.S.: Multiple forms of iduronate 2-sulphate sulphatase in human tissues and body fluids. Biochim Biophys Acta 708(2), 134–140 (1982)

    Article  CAS  PubMed  Google Scholar 

  11. Millat, G., Froissart, R., Maire, I., Bozon, D.: Characterization of iduronate sulphatase mutants affecting N-glycosylation sites and the cysteine-84 residue. Biochem J 326(Pt 1), 243–247 (1997)

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Parkinson-Lawrence, E., Turner, C., Hopwood, J., Brooks, D.: Analysis of normal and mutant iduronate-2-sulphatase conformation. Biochem J 386(Pt 2), 395–400 (2005). doi:10.1042/bj20040739

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Zhou, Q., Kyazike, J., Edmunds, T., Higgins, E.: Mannose 6-phosphate quantitation in glycoproteins using high-pH anion-exchange chromatography with pulsed amperometric detection. Anal Biochem 306(2), 163–170 (2002)

    Article  CAS  PubMed  Google Scholar 

  14. Rohrer, J.S., Thayer, J., Weitzhandler, M., Avdalovic, N.: Analysis of the N-acetylneuraminic acid and N-glycolylneuraminic acid contents of glycoproteins by high-pH anion-exchange chromatography with pulsed amperometric detection. Glycobiology 8(1), 35–43 (1998)

    Article  CAS  PubMed  Google Scholar 

  15. Rohrer, J.S.: Analyzing sialic acids using high-performance anion-exchange chromatography with pulsed amperometric detection. Anal Biochem 283(1), 3–9 (2000). doi:10.1006/abio.2000.4643

    Article  CAS  PubMed  Google Scholar 

  16. Kirkpatrick, D.S., Gerber, S.A., Gygi, S.P.: The absolute quantification strategy: a general procedure for the quantification of proteins and post-translational modifications. Methods (San Diego, Calif) 35(3), 265–273 (2005). doi:10.1016/j.ymeth.2004.08.018

    Article  CAS  Google Scholar 

  17. Gerber, S.A., Rush, J., Stemman, O., Kirschner, M.W., Gygi, S.P.: Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS. Proc Natl Acad Sci U S A 100(12), 6940–6945 (2003). doi:10.1073/pnas.0832254100

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Voznyi, Y.V., Keulemans, J.L., van Diggelen, O.P.: A fluorimetric enzyme assay for the diagnosis of MPS II (Hunter disease). J Inherit Metab Dis 24(6), 675–680 (2001)

    Article  CAS  PubMed  Google Scholar 

  19. Mayes, J.S., Cray, E.L., Dell, V.A., Scheerer, J.B., Sifers, R.N.: Endocytosis of lysosomal alpha-galactosidase A by cultured fibroblasts from patients with Fabry disease. Am J Hum Genet 34(4), 602–610 (1982)

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Schmidt, B., Selmer, T., Ingendoh, A., von Figura, K.: A novel amino acid modification in sulfatases that is defective in multiple sulfatase deficiency. Cell 82(2), 271–278 (1995)

    Article  CAS  PubMed  Google Scholar 

  21. Dierks, T., Schmidt, B., von Figura, K.: Conversion of cysteine to formylglycine: a protein modification in the endoplasmic reticulum. Proc Natl Acad Sci U S A 94(22), 11963–11968 (1997)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Schlotawa, L., Ennemann, E.C., Radhakrishnan, K., Schmidt, B., Chakrapani, A., Christen, H.J., Moser, H., Steinmann, B., Dierks, T., Gartner, J.: SUMF1 mutations affecting stability and activity of formylglycine generating enzyme predict clinical outcome in multiple sulfatase deficiency. Eur J Hum Genet: EJHG 19(3), 253–261 (2011). doi:10.1038/ejhg.2010.219

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Dierks, T., Lecca, M.R., Schmidt, B., von Figura, K.: Conversion of cysteine to formylglycine in eukaryotic sulfatases occurs by a common mechanism in the endoplasmic reticulum. FEBS Lett 423(1), 61–65 (1998)

    Article  CAS  PubMed  Google Scholar 

  24. Roeser, D., Preusser-Kunze, A., Schmidt, B., Gasow, K., Wittmann, J.G., Dierks, T., von Figura, K., Rudolph, M.G.: A general binding mechanism for all human sulfatases by the formylglycine-generating enzyme. Proc Natl Acad Sci U S A 103(1), 81–86 (2006). doi:10.1073/pnas.0507592102

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Jones, A.J., Papac, D.I., Chin, E.H., Keck, R., Baughman, S.A., Lin, Y.S., Kneer, J., Battersby, J.E.: Selective clearance of glycoforms of a complex glycoprotein pharmaceutical caused by terminal N-acetylglucosamine is similar in humans and cynomolgus monkeys. Glycobiology 17(5), 529–540 (2007). doi:10.1093/glycob/cwm017

    Article  CAS  PubMed  Google Scholar 

  26. Tong, P.Y., Gregory, W., Kornfeld, S.: Ligand interactions of the cation-independent mannose 6-phosphate receptor. The stoichiometry of mannose 6-phosphate binding. J Biol Chem 264(14), 7962–7969 (1989)

    CAS  PubMed  Google Scholar 

  27. Chirmule, N., Jawa, V., Meibohm, B.: Immunogenicity to therapeutic proteins: impact on PK/PD and efficacy. AAPS J 14(2), 296–302 (2012). doi:10.1208/s12248-012-9340-y

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This study was sponsored by Green Cross Corp. (Yongin, Korea). This study was supported by a grant of the Korean Health Technology R&D Project, Ministry of Health & Welfare, Republic of Korea (A101779). We thank Myeong-suk Moon and Jun-mo Bae for helpful supporting on specific enzyme activity assay and in vitro cell uptake assay.

All of the authors have nothing to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-Kyu Jin.

Additional information

Yo Kyung Chung and Young Bae Sohn were equally contributed to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chung, Y.K., Sohn, Y.B., Sohn, J.M. et al. A biochemical and physicochemical comparison of two recombinant enzymes used for enzyme replacement therapies of hunter syndrome. Glycoconj J 31, 309–315 (2014). https://doi.org/10.1007/s10719-014-9523-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-014-9523-0

Keywords

Navigation