Skip to main content
Log in

X-Ray Generation during Piezoelectric Lighter Operation in Vacuum

  • Published:
Glass and Ceramics Aims and scope Submit manuscript

The results of experimental studies on the generation of x-rays when operating a piezoelectric kitchen lighter in a vacuum are presented. For the first time, a new method for increasing the intensity of x-ray radiation in the piezoelectric effect in a high vacuum through the use of an additional electron emitter is proposed and demonstrated. The maximum energy of x-ray bremsstrahlung reaches 14 keV. This means that electrons are accelerated in vacuum in the field of a piezoelectric ceramic to energy of at least 14 keV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

References

  1. J. D. Brownridge, “Pyroelectric x-ray generator,” Nature, 358, 287 – 288 (1992).

    Article  Google Scholar 

  2. J. D. Brownridge and S. Raboy, “Investigations of pyroelectric generation of x-rays,” J. Appl. Phys., 86, 640 (1997).

    Article  Google Scholar 

  3. J. Geuther and Y. Danon, “High-energy x-ray production with pyroelectric crystals,” J. Appl. Phys., 97, 104916 (2005).

    Article  Google Scholar 

  4. K. A. Vokhmyanina, O. O. Ivashchuk, V. Yu. Ionidi, et al., “Possibility of using the piezoceramic PZT-19 in pyroelectric x-ray generators,” Steklo Keram., No. 11, 27 – 31 (2016); K. A. Vokhmyanina, O. O. Ivashchuk, V. Yu. Ionidi, et al., “Possibility of using the piezoceramic PZT-19 in pyroelectric x-ray generators,” Glass Ceram., 73(11 – 12), 415 – 419 (2016).

  5. A. V. Shchagin, V. S. Miroshnik, V. I. Volkov, and A. N. Oleinik, “Ferroelectric ceramics in a pyroelectric accelerator,” Appl. Phys. Lett. 107, 233505 (2015).

    Article  Google Scholar 

  6. J. R. Hird, C. G. Camara, and S. J. Putterman, “A triboelectric x-ray source,” Appl. Phys. Lett. 68, 133501 (2011).

    Article  Google Scholar 

  7. C. G. Camara, J. V. Escobar, J. R. Hird, and S. J. Putterman, “Correlation between nanosecond x-ray flashes and stick-slip friction in peeling tape,” Nature, 455, 1089 – 1092 (2008).

    Article  CAS  Google Scholar 

  8. M. Hockley and Z. Huang, “Strong electron and ion emissions induced by a pyroelectric crystal,” J. Appl. Phys., 113, 034902 (2013).

    Article  Google Scholar 

  9. V. I. Nagaichenko, V. S. Miroshnik, A. M. Yegorov and A. V. Shchagin, “Research of the spectra of the charged particles beam in the pyroelectric accelerator,” Vopr. Atom. Nauki Tekh., Ser. Yaderno-Fiz. Issled., No. 2(53), 34 – 39 (2010); V. I. Nagaichenko, V. S. Miroshnik, A. M. Yegorov and A. V. Shchagin, “Research of the spectra of the charged particles beam in the pyroelectric accelerator,” Probl. Atomic Sci. Technol., Ser. Nucl. Phys. Invest., No. 2(53), 34 – 39 (2010).

  10. B. Naranjo, J. K. Gimzewski, and S. Putterman, “Observation of nuclear fusion driven by a pyroelectric crystal,” Nature, 434, 1115 – 1117 (2005).

    Article  CAS  Google Scholar 

  11. J. Geuther, Ya. Danon, and F. Saglime, “Nuclear reactions induced by a pyroelectric accelerator,” Phys. Rev. Lett., 96, 054803 (2006).

  12. W. Tornow, S. M. Shafroth, and J. D. Brownridge, “Evidence for neutron production in deuterium gas with a pyroelectric crystal without tip,” J. Appl. Phys., 104, 034905 (2008).

    Article  Google Scholar 

  13. D. Gillich, A. Kovanen, and B. Herman, “Pyroelectric crystal neutron production in a portable prototype vacuum system,” Nucl. Instrum. Methods Phys. Res. Sect. A, 602, 306 (2009).

    Article  CAS  Google Scholar 

  14. J. Kawai, et al., “X-ray fluorescence analysis with a pyroelectric x-ray generator,” X-Ray Spectrom., 34, 521 (2005).

    Article  CAS  Google Scholar 

  15. E. L. Neidholdt and J. L. Beauchamp, “Compact ambient pressure pyroelectric ion source for mass spectrometry,” Anal. Chem., 79, 3945 (2007).

    Article  CAS  Google Scholar 

  16. S. Imashuku and K.Wagatsuma, “Portable pyroelectric electron probe microanalyzer with a spot size of 40 μm,” Rev. Sci. Instrum., 88, 023117 (2017).

    Article  Google Scholar 

  17. S. Imashuku, N. Fuyuno, J. Kawai, and K. Hanasaki, “Portable rare-earth element analyzer using pyroelectric crystal,” Rev. Sci. Instrum., 84, 126105 (2013).

    Article  Google Scholar 

  18. O. O. Ivashchuk, A. V. Shchagin, A. S. Kubankin, et al., “Pyroelectric accelerator and x-ray source in pulsed mode,” JINST, 15, Ñ02002 (2020).

  19. L. Orlikov, K. M. Mambetowa, S. I. Arestov, and S. M. Shandarov, “Pulse source of electrons based on the pyroeffect,” in: 7th International Congress on Energy Fluxes and Radiation Effects (EFRE) [in Russian], Tomsk (2020), pp. 359 – 363.

  20. B. Gall, S. D. Kovaleski, J. A. VanGordon, et al., “Investigation of the piezoelectric effect as a means to generate x-rays,” IEEE Trans. Plasma Sci., 41, 106 – 111 (2013).

    Article  CAS  Google Scholar 

  21. O. O. Ivashchuk, A. V. Shchagin, V. S. Miroshnik, et al., “Ceramic piezoelectric transformer in vacuum for acceleration of electrons and production of x-rays,” Materials, 11, 1188 (2018).

    Article  Google Scholar 

  22. A. V. Shchagin, V. S. Miroshnik, V. I. Volkov, et al., “Piezoelectric transformer aided x-ray generation in vacuum,” Steklo Keram., No. 11, 24 – 26 (2017); A. V. Shchagin, V. S. Miroshnik, V. I. Volkov, et al., “Piezoelectric transformer aided x-ray generation in vacuum,” Glass Ceram., 74(11 – 12), 404 – 405 (2017).

  23. K. A. Vokhmyanina, V. S. Sotnikova, A. A. Kaplii, et al., “Possibility of using dielectric channels as deflecting systems for controlling accelerated electron beams,” Steklo Keram., No. 10, 15 – 18 (2017); K. A. Vokhmyanina, V. S. Sotnikova, A. A. Kaplii, et al., “Possibility of using dielectric channels as deflecting systems for controlling accelerated electron beams,” Glass Ceram., 74(9 – 10), 355 – 357 (2017).

  24. O. O. Ivashchuk, A. V. Shchagin, A. S. Kubankin, et al., “Piezoelectric Accelerator,” Sci. Rep., 8, 816488 (2018).

    Article  Google Scholar 

  25. O. O. Ivashchuk, A. V. Shchagin, A. S. Kubankin, et al., “Quartz accelerator of charged particles,” Probl. Atomic Sci. Technol., Ser. Nucl. Phys. Invest., 3(127), 59 (2020).

  26. A. V. Kukuruza and G. A. Deryabin, Piezoelectric Lighter, Pat. BY 935 U [in Russian] (2003).

  27. Pyroelectric X-Ray Source COOL-X, Amptek; URL: http://www.amptek.com/pdf/coolx.pdf.

Download references

This work was performed with financial support from the competitive part of the state task on the creation and development of laboratories, project No. FZWG-2020-0032 (2019-1569) and using equipment from the Center for Collective Use at the Federal Research Center for Crystallography and Photonics with the support of the Ministry of Education and Science of the Russian Federation (project RFMEFI62119X0035).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. O. Ivashchuk.

Additional information

Translated from Steklo i Keramika, No. 12, pp. 34 – 38, December, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivashchuk, O.O., Shchagin, A.V., Kubankin, A.S. et al. X-Ray Generation during Piezoelectric Lighter Operation in Vacuum. Glass Ceram 77, 469–472 (2021). https://doi.org/10.1007/s10717-021-00334-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10717-021-00334-8

Key words

Navigation