Skip to main content
Log in

Effect of Mechanochemical Activation Conditions on the Physicochemical Properties of Zinc Oxide

  • Published:
Glass and Ceramics Aims and scope Submit manuscript

The mechanical activation of zinc oxide with the addition of a surfactant (triethanolamine) in mills of two types — roller-ring vibratory and planetary-centrifugal — is examined. The dependences of the specific surface area on the activation time and content of the surfactant are presented and the effect of the mechanochemical activation on the pore-radius distribution, the dispersity of zinc oxide, and the surface morphology is shown. It is shown that the physicochemical properties of activated zinc oxide make it useful for the production of technical ceramic in the form of carriers for the catalysts and adsorbents used in the desulfurization of gases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

References

  1. A. P. Il’in, V. Yu. Prokofiev, and N. E. Gordina, Extruded Sorbents Based on Zinc Oxide. Scientific Basis for the Preparation of Catalysts. Creative Legacy and Further Development of the Works of Professor I. P. Kirillov [in Russian], GOU VPO Ivanovsk. Gos. Khim.-Tekhnol. Universitet, Ivanovo (2008).

    Google Scholar 

  2. W. Zhong Lin, “Zinc oxide nanostructures: growth, properties and applications,” J. Phys.: Cond. Matter, 16, 829 – 858 (2004).

    Google Scholar 

  3. J. Calnan Hüpkes, B. Rech, H. Siekmann, and A. Tiwari, “High deposition rate aluminium-doped zinc oxide films with highly efficient light trapping for silicon thin film solar cells,” Thin Solid Films, 516(6), 1242 – 1248 (2008).

    Article  Google Scholar 

  4. Ü. Özgür, Ya. I. Alivov, C. Liu, et al., “Comprehensive review of ZnO materials and devices,” J. Appl. Phys., 98, 103 (2005).

    Article  Google Scholar 

  5. C. C. Chang and J. H. Chang, “A study on fabrication of zinc oxide thin film acoustic sensors,” J. Mater. Sci. Technol., 4, 49 – 53 (1996).

    Google Scholar 

  6. V. C. De Sousa, M. R. Morelli, G. A. Kiminami, and M. S. Castro, “Electrical properties of ZnO-based varistors prepared by combustion synthesis,” J. Mat. Sci.: Mater. Electronics, 13(6), 319 – 325 (2002).

    Google Scholar 

  7. N. A. Shabanova, Chemistry and Technology of Nanodispersed Oxides [in Russian], Akademkniga, Moscow (2007).

    Google Scholar 

  8. S. L. Ryabushkin, “Structure and properties of zinc oxide films obtained in the zone of recombination combustion of low-temperature plasma,” Tech. Phys., 77(5), 130 – 132 (2007).

    Google Scholar 

  9. X. Qu and D. Jia, “Synthesis of octahedral ZnO mesoscale superstructures via thermal decomposing octahedral zinc hydroxide precursors,” J. Cryst. Growth, 311, 1223 – 1228 (2009).

    Article  CAS  Google Scholar 

  10. D. B. Kononov, A. N. Gilev, D. V. Timofeev, et al., “Method of obtaining zinc oxide, Pat. 2420458 RF, No. 2009133047/05,” Byull. Izobr. Polezn. Modeli, No. 16 (2011); declared September 2, 2009; publ. October 6, 2011.

  11. Yu. G. Shirokov, Mechanochemistry of the Technology of Catalysts [in Russian], Ivanovskii Gos. Khim-Tekhnol. Universitet, Ivanovo (2005).

    Google Scholar 

  12. T. Andelman, Y. Gong, G. Neumark, and S. O’Brien, “Diameter control and photoluminescence of ZnO Nanorods from Trialkylamines,” J. Nanomaterials, Article ID 73824, 4 (2007).

  13. S. K. Lim, S. H. Hwang, S. Kim, and H. Park, “Preparation of ZnO nanorods by microemulsion synthesis and their application as a CO gas sensor,” Sensors and Actuators, 160, 94 – 98 (2011).

    Article  CAS  Google Scholar 

  14. D. Sarkara, S. Tikkub, V. Thaparb, et al., “Formation of zinc oxide nanoparticles of different shapes in water-in-oil microemulsion,” Colloids and Surfaces: Physicochem., Eng. Aspects, 381, 123 – 129 (2011).

    Article  Google Scholar 

  15. A. A. Il’in, R. N. Rumyantsev, V. V. Veisgaim, and A. P. Il’in, “Mechanochemical Oxidation of Aluminum for Production of Its Oxides, Hydroxides and Hydrogen,” Russ. J. Phys. Chem. A, 90(4), 764 – 770 (2016).

    Article  Google Scholar 

  16. A. A. Il’in, N. N. Smirnov, R. N. Rumyantsev, et al., “Mechanochemical synthesis of zinc oxides with the use of liquid and gaseous media,” Russ. J. Appl. Chem., 87(10), 1412 – 1416 (2014).

    Article  Google Scholar 

  17. A. P. Il’in, I. P. Kirillov, and Yu. G. Shirokov, “Choice of optimal conditions for the preparation of a molded chemisorbent catalyst based on zinc and aluminum oxides,” Izv. Vyssh. Uchebn. Zaved. SSSR, Khim. Khim. Tekhnol., 17(2), 246 (1973).

    Google Scholar 

  18. Yu. G. Shirokov, A. P. Il’in, I. P. Kirillov, et al.,” “Influence of mechanochemical treatment of a highly concentrated zinc oxide suspension on the quality of a molded sulfur absorbent,” Izv. Vyssh. Uchebn. Zaved. SSSR, Khim. Khim. Tekhnol., 12(6), 1288 (1979).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. N. Rumyantsev.

Additional information

Translated from Steklo i Keramika, No. 10, pp. 41 – 46, October, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rumyantsev, R.N., Mel’nikov, A.A., Batanov, A.A. et al. Effect of Mechanochemical Activation Conditions on the Physicochemical Properties of Zinc Oxide. Glass Ceram 77, 400–404 (2021). https://doi.org/10.1007/s10717-021-00315-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10717-021-00315-x

Key words

Navigation