Skip to main content
Log in

Calcium Phosphate Ceramic in the System Ca(PO3)2–Ca2P2O7 Based on Powder Mixtures Containing Calcium Hydrophosphate

  • BIOMATERIALS
  • Published:
Glass and Ceramics Aims and scope Submit manuscript

Powder mixtures prepared by mechanical activation from synthetic hydrated acidic calcium phosphates Ca(H2PO4)2 · H2O and CaHPO4 · 2H2O were used to obtain resorbable ceramic in the system Ca (PO3)2–Ca2P2O7. The phase composition of the ceramic after firing in the interval 700 – 1000°C was represented by biocompatible and bioresorbable phases: calcium polyphosphate Ca(PO3)2, tromelite Ca4P6O19, and calcium pyrophosphate Ca2P2O7. The obtained materials can be used to fabricate resorbable implants for regenerative treatment of defects of bone tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

References

  1. T. V. Safronova and V. I. Putlyaev, “Powder systems for calcium phosphate ceramics,” Inorg. Mater., 53, 17 – 26 (2017).

    Article  CAS  Google Scholar 

  2. G. MacLennan and C. A. Beevers, “The crystal structure of monocalcium phosphate monohydrate, Ca(H2PO4)2 · H2O,” Acta Cryst., 9(2), 187 – 190 (1956).

    Article  CAS  Google Scholar 

  3. B. Boonchom and C. Danvirutai, “The morphology and thermal behavior of Calcium dihydrogen phosphate monohydrate (Ca(H2PO4)2 · H2O) obtained by a rapid precipitation route at ambient temperature in different media,” J. Optoelectron. Biomed. Mater., 1, 115 – 123 (2009).

    Google Scholar 

  4. L. E. Jackson and A. J. Wright, “A new synthetic route to calcium polyphosphates,” Key Eng. Mater., 284, 71 – 74 (2005).

    Article  Google Scholar 

  5. J. Trommer, M. Schneider, H. Worzala, and A. N. Fitch, “Structure determination of CaH2P2O7 from in situ powder diffraction data,” Mater. Sci. Forum, 321, 374 – 379 (2000).

    Article  Google Scholar 

  6. E. H. Brown, W. E. Brown, J. R. Lehr, et al., “Calcium ammonium pyrophosphates,” J. Phys. Chem., 62(3), 366 – 367 (1958).

    Article  CAS  Google Scholar 

  7. Y. V. Subbarao and R. Ellis, “Reaction products of polyphosphates and orthophosphates with soils and influence on uptake of phosphorus by plants,” Soil Sci. Soc. Am. J., 39(6), 1085 – 1088 (1975).

    Article  CAS  Google Scholar 

  8. E. H. Brown, J. R. Lehr, J. P. Smith, and A. W. Frazier, “Fertilizer Materials, Preparation and Characterization of Some Calcium Pyrophosphates,” J. Agricult. Food Chem., 11(3), 214 – 222 (1963).

    Article  CAS  Google Scholar 

  9. D. Zobel and N. Ba, “Untersuchungen zur Phosphitpyrolyse; Reaktionen beim Erhitzen von CaH2(HPO3)2 · H2O in Abwesenheit von Sauerstoff,” Z. Chem., 9(11), 433 (1969).

    Article  CAS  Google Scholar 

  10. T. V. Safronova, E. A. Mukhin, V. I. Putlyaev, et al., “Amorphous calcium phosphate powder synthesized from calcium acetate and polyphosphoric acid for bioceramics application,” Ceram. Int., 43, 1310 – 1317 (2017).

    Article  CAS  Google Scholar 

  11. H. A. Höppe, “Synthesis, crystal structure, and vibrational spectra of Ca4P6O19 (trömelite) – a catena – hexaphosphate,” Zeitschrift für Anorganische und Allgemeine Chemie, 631(6 – 7), 1272 – 1276 (2005).

    Article  Google Scholar 

  12. T. V. Safronova, V. I. Putlyaev, M. A. Shekhirev, and A. V. Kuznetsov, “Composite ceramic containing a bioresorbable phase,” Steklo Keram., No. 3, 31 – 35 (2007); T. V. Safronova, V. I. Putlyaev, M. A. Shekhirev, and A. V. Kuznetsov, “Composite ceramic containing a bioresorbable phase,” Glass Ceram., 64(3 – 4), 102 – 106 (2007).

  13. T. V. Safronova, A. V. Kuznetsov, S. A. Korneychuk, et al., “Calcium phosphate powders synthesized from solutions with \( \left[{\mathrm{Ca}}^{2+}\right]/\left[{\mathrm{PO}}_4^{3-}\right] \) = 1 for bioresorbable ceramics,” Cent. Eur. J. Chem., 7(2), 184 – 191 (2009).

    CAS  Google Scholar 

  14. T. V. Safronova, S. A. Kurbatova, T. B. Shatalova, et al, “Calcium pyrophosphate powder synthesized from pyrophosphoric acid and calcium acetate for obtaining bioceramic,” Materialovedenie, 7(7), 41 – 48 (2016).

    Google Scholar 

  15. T. V. Safronova, V. I. Putlyaev, S. A. Kurbatova, et al., “Properties of amorphous calcium pyrophosphate powder synthesized with the use of ion-exchange for obtaining bioceramic,” Neorg. Mater., 51(11), 1269 – 1276 (2015).

    Google Scholar 

  16. T. V. Safronova, V. I. Putlayev, K. A. Bessonov, and V. K. Ivanov, “Ceramics based on calcium pyrophosphate nanopowders,” Proc. Appl. Ceram., 7(1), 9 – 14 (2013).

    Article  CAS  Google Scholar 

  17. Soorya Kabekkodu (ed.), ICDD (2010). PDF-4+ 2010 (Database), International Centre for Diffraction Data, Newtown Square, PA, USA(2010); URL: http://www.icdd.com/products/pdf2.htm.

Download references

The equipment used in this work was acquired using the resources of the program of advancement of Moscow University. This research was supported by RFFI (grants Nos. 16-53-00154, 16-08-01172) and BRFFI (grant No. Kh16R-030).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Safronova.

Additional information

Translated from Steklo i Keramika, No. 7, pp. 37 – 44, July, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safronova, T.V., Putlyaev, V.I., Knot’ko, A.V. et al. Calcium Phosphate Ceramic in the System Ca(PO3)2–Ca2P2O7 Based on Powder Mixtures Containing Calcium Hydrophosphate. Glass Ceram 75, 279–286 (2018). https://doi.org/10.1007/s10717-018-0072-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10717-018-0072-z

Key words

Navigation