Skip to main content
Log in

\(\delta \mathcal {N}\) formalism on the past light-cone

  • Research
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We apply the gradient expansion approximation to the light-cone gauge, obtaining a separate universe picture at non-linear order in perturbation theory within this framework. Thereafter, we use it to generalize the \(\delta \mathcal {N}\) formalism in terms of light-cone perturbations. As a consistency check, we demonstrate the conservation of the gauge invariant curvature perturbation on uniform density hypersurface \(\zeta \) at the completely non-linear level. The approach studied provides a self-consistent framework to connect at non-linear level quantities from the primordial universe, such as \(\zeta \), written in terms of the light-cone parameters, to late time observables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

Notes

  1. As an example in a flat space, under a Fourier transformation, spatial derivatives give rise to terms proportional to k. Here we are considering that for a quantity Q, \(\frac{1}{a} \partial _{i}Q\ll \partial _{t}Q\approx HQ\) [10].

  2. From now on, for a generic tensor \(C_{ij}\), we will denote its trace with \(C\equiv f^{ij}C_{ij}\).

  3. Note that, although Eq. (19) are very similar to Eq. (14), after the gradient expansion we have replaced \(\frac{d}{d\tilde{\lambda }}=\frac{d}{d\lambda }+\mathcal {O}(\epsilon ^{2})\).

  4. This is a quite general condition for isotropic spaces and, as we will show later, this is also the case for an isotropic LC background.

  5. For the LC metric, Latin indices will always refer to the coordinates w and \(\theta ^a\).

  6. We will be using the subscript UC to describe the UCLC gauge fixing and the subscript UD to describe the UDLC gauge fixing.

References

  1. Abate, A., et al.: Large Synoptic Survey Telescope: Dark Energy Science Collaboration (2012) arXiv:1211.0310 [astro-ph.CO]

  2. Amendola, L., et al.: Cosmology and fundamental physics with the Euclid satellite. Living Rev. Rel. 21(1), 2 (2018). https://doi.org/10.1007/s41114-017-0010-3. arXiv:1606.00180 [astro-ph.CO]

    Article  Google Scholar 

  3. Aghamousa, A., et al.: The DESI Experiment Part I: Science,Targeting, and Survey Design (2016) arXiv:1611.00036 [astro-ph.IM]

  4. Wands, D., Malik, K.A., Lyth, D.H., Liddle, A.R.: A New approach to the evolution of cosmological perturbations on large scales. Phys. Rev. D 62, 043527 (2000). https://doi.org/10.1103/PhysRevD.62.043527. arXiv:astro-ph/0003278

    Article  ADS  MathSciNet  Google Scholar 

  5. Lyth, D.H., Malik, K.A., Sasaki, M.: A General proof of the conservation of the curvature perturbation. JCAP 05, 004 (2005). https://doi.org/10.1088/1475-7516/2005/05/004. arXiv:astro-ph/0411220

    Article  ADS  Google Scholar 

  6. Cai, R.-G., Hu, B., Zhang, H.-B.: Acoustic signatures in the Cosmic Microwave Background bispectrum from primordial magnetic fields. JCAP 08, 025 (2010). https://doi.org/10.1088/1475-7516/2010/08/025. arXiv:1006.2985 [astro-ph.CO]

    Article  ADS  Google Scholar 

  7. Komatsu, E., Spergel, D.N.: The Cosmic Microwave Background bispectrum as a test of the physics of inflation and probe of the astrophysics of the low-redshift Universe. In: 9th Marcel Grossmann Meeting (MG 9) (2000)

  8. Sasaki, M., Stewart, E.D.: A general analytic formula for the spectral index of the density perturbations produced during inflation. Prog. Theor. Phys. 95, 71–78 (1996). https://doi.org/10.1143/PTP.95.71. arXiv:astro-ph/9507001

    Article  ADS  Google Scholar 

  9. Sasaki, M., Tanaka, T.: Superhorizon scale dynamics of multiscalar inflation. Prog. Theor. Phys. 99, 763–782 (1998). https://doi.org/10.1143/PTP.99.763. arXiv:gr-qc/9801017

    Article  ADS  Google Scholar 

  10. Salopek, D.S., Bond, J.R.: Nonlinear evolution of long wavelength metric fluctuations in inflationary models. Phys. Rev. D 42, 3936–3962 (1990). https://doi.org/10.1103/PhysRevD.42.3936

    Article  ADS  MathSciNet  Google Scholar 

  11. Starobinsky, A.A.: Dynamics of phase transition in the new inflationary universe scenario and generation of perturbations. Phys. Lett. B 117, 175–178 (1982). https://doi.org/10.1016/0370-2693(82)90541-X

    Article  ADS  Google Scholar 

  12. Starobinsky, A.A.: Multicomponent de sitter (inflationary) stages and the generation of perturbations. JETP Lett. 42, 152–155 (1985)

    ADS  Google Scholar 

  13. Lyth, D.H., Rodriguez, Y.: The Inflationary prediction for primordial non-Gaussianity. Phys. Rev. Lett. 95, 121302 (2005). https://doi.org/10.1103/PhysRevLett.95.121302. arXiv:astro-ph/0504045

    Article  ADS  Google Scholar 

  14. Arnowitt, R.L., Deser, S., Misner, C.W.: The dynamics of general relativity. Gen. Relativ. Gravit. 40, 1997–2027 (2008). https://doi.org/10.1007/s10714-008-0661-1. arXiv:gr-qc/0405109

    Article  ADS  Google Scholar 

  15. Sugiyama, N.S., Komatsu, E., Futamase, T.: \(\delta \)N formalism. Phys. Rev. D 87(2), 023530 (2013). https://doi.org/10.1103/PhysRevD.87.023530. arXiv:1208.1073 [gr-qc]

    Article  ADS  Google Scholar 

  16. Vennin, V., Starobinsky, A.A.: Correlation functions in stochastic inflation. Eur. Phys. J. C 75, 413 (2015). https://doi.org/10.1140/epjc/s10052-015-3643-y. arXiv:1506.04732 [hep-th]

    Article  ADS  Google Scholar 

  17. Starobinsky, A.A.: Stochastic de Sitter (inflationary) stage in the early Universe. Lect. Notes Phys. 246, 107–126 (1986). https://doi.org/10.1007/3-540-16452-9_6

    Article  ADS  MathSciNet  Google Scholar 

  18. Finelli, F., Marozzi, G., Starobinsky, A.A., Vacca, G.P., Venturi, G.: Generation of fluctuations during inflation: comparison of stochastic and field-theoretic approaches. Phys. Rev. D 79, 044007 (2009). https://doi.org/10.1103/PhysRevD.79.044007. arXiv:0808.1786 [hep-th]

    Article  ADS  Google Scholar 

  19. Finelli, F., Marozzi, G., Starobinsky, A.A., Vacca, G.P., Venturi, G.: Stochastic growth of quantum fluctuations during slow-roll inflation. Phys. Rev. D 82, 064020 (2010). https://doi.org/10.1103/PhysRevD.82.064020. arXiv:1003.1327 [hep-th]

    Article  ADS  Google Scholar 

  20. Prokopec, T., Rigopoulos, G.: \({\Delta }\)N and the stochastic conveyor belt of ultra slow-roll inflation. Phys. Rev. D 104(8), 083505 (2021). https://doi.org/10.1103/PhysRevD.104.083505. arXiv:1910.08487 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  21. Firouzjahi, H., Nassiri-Rad, A., Noorbala, M.: Stochastic ultra slow roll inflation. JCAP 01, 040 (2019). https://doi.org/10.1088/1475-7516/2019/01/040. arXiv:1811.02175 [hep-th]

    Article  ADS  Google Scholar 

  22. Ballesteros, G., Rey, J., Taoso, M., Urbano, A.: Stochastic inflationary dynamics beyond slow-roll and consequences for primordial black hole formation. JCAP 08, 043 (2020). https://doi.org/10.1088/1475-7516/2020/08/043. arXiv:2006.14597 [astro-ph.CO]

    Article  ADS  MathSciNet  Google Scholar 

  23. Pattison, C., Vennin, V., Wands, D., Assadullahi, H.: Ultra-slow-roll inflation with quantum diffusion. JCAP 04, 080 (2021). https://doi.org/10.1088/1475-7516/2021/04/080. arXiv:2101.05741 [astro-ph.CO]

    Article  ADS  MathSciNet  Google Scholar 

  24. Biagetti, M., Franciolini, G., Kehagias, A., Riotto, A.: Primordial black holes from inflation and quantum diffusion. JCAP 07, 032 (2018). https://doi.org/10.1088/1475-7516/2018/07/032. arXiv:1804.07124 [astro-ph.CO]

    Article  ADS  MathSciNet  Google Scholar 

  25. Ezquiaga, J.M., García-Bellido, J.: Quantum diffusion beyond slow-roll: implications for primordial black-hole production. JCAP 08, 018 (2018). https://doi.org/10.1088/1475-7516/2018/08/018. arXiv:1805.06731 [astro-ph.CO]

    Article  ADS  MathSciNet  Google Scholar 

  26. Talebian-Ashkezari, A., Ahmadi, N., Abolhasani, A.A.: \(\delta \) M formalism: a new approach to cosmological perturbation theory in anisotropic inflation. JCAP 03, 001 (2018). https://doi.org/10.1088/1475-7516/2018/03/001. arXiv:1609.05893 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  27. Tanaka, T., Urakawa, Y.: Anisotropic separate universe and Weinberg’s adiabatic mode. JCAP 07, 051 (2021). https://doi.org/10.1088/1475-7516/2021/07/051. arXiv:2101.05707 [astro-ph.CO]

    Article  ADS  MathSciNet  Google Scholar 

  28. Tanaka, T., Urakawa, Y.: Statistical anisotropy of primordial gravitational waves from generalized \(\delta N\) formalism (2023) arXiv:2309.08497 [gr-qc]

  29. Gasperini, M., Marozzi, G., Nugier, F., Veneziano, G.: Light-cone averaging in cosmology: formalism and applications. JCAP 07, 008 (2011). https://doi.org/10.1088/1475-7516/2011/07/008. arXiv:1104.1167 [astro-ph.CO]

    Article  ADS  Google Scholar 

  30. Ben-Dayan, I., Gasperini, M., Marozzi, G., Nugier, F., Veneziano, G.: Backreaction on the luminosity-redshift relation from gauge invariant light-cone averaging. JCAP 04, 036 (2012). https://doi.org/10.1088/1475-7516/2012/04/036. arXiv:1202.1247 [astro-ph.CO]

    Article  ADS  Google Scholar 

  31. Ben-Dayan, I., Gasperini, M., Marozzi, G., Nugier, F., Veneziano, G.: Do stochastic inhomogeneities affect dark-energy precision measurements? Phys. Rev. Lett. 110(2), 021301 (2013). https://doi.org/10.1103/PhysRevLett.110.021301. arXiv:1207.1286 [astro-ph.CO]

    Article  ADS  Google Scholar 

  32. Ben-Dayan, I., Marozzi, G., Nugier, F., Veneziano, G.: The second-order luminosity-redshift relation in a generic inhomogeneous cosmology. JCAP 11, 045 (2012). https://doi.org/10.1088/1475-7516/2012/11/045. arXiv:1209.4326 [astro-ph.CO]

    Article  ADS  Google Scholar 

  33. Fanizza, G., Gasperini, M., Marozzi, G., Veneziano, G.: An exact Jacobi map in the geodesic light-cone gauge. JCAP 11, 019 (2013). https://doi.org/10.1088/1475-7516/2013/11/019. arXiv:1308.4935 [astro-ph.CO]

    Article  ADS  MathSciNet  Google Scholar 

  34. Marozzi, G.: The luminosity distance–redshift relation up to second order in the Poisson gauge with anisotropic stress. Class. Quant. Gravit. 32(4), 045004 (2015) https://doi.org/10.1088/0264-9381/32/4/045004arXiv:1406.1135 [astro-ph.CO]. [Erratum: Class.Quant.Grav. 32, 179501 (2015)]

  35. Fanizza, G., Gasperini, M., Marozzi, G., Veneziano, G.: Generalized covariant prescriptions for averaging cosmological observables. JCAP 02, 017 (2020). https://doi.org/10.1088/1475-7516/2020/02/017. arXiv:1911.09469 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  36. Fanizza, G., Marozzi, G., Medeiros, M., Schiaffino, G.: The cosmological perturbation theory on the geodesic light-cone background. JCAP 02, 014 (2021). https://doi.org/10.1088/1475-7516/2021/02/014. arXiv:2009.14134 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  37. Di Dio, E., Durrer, R., Marozzi, G., Montanari, F.: Galaxy number counts to second order and their bispectrum. JCAP 12, 017 (2014) https://doi.org/10.1088/1475-7516/2014/12/017arXiv:1407.0376 [astro-ph.CO]. [Erratum: JCAP 06, E01 (2015)]

  38. Di Dio, E., Durrer, R., Marozzi, G., Montanari, F.: The bispectrum of relativistic galaxy number counts. JCAP 01, 016 (2016). https://doi.org/10.1088/1475-7516/2016/01/016. arXiv:1510.04202 [astro-ph.CO]

    Article  ADS  MathSciNet  Google Scholar 

  39. Marozzi, G., Fanizza, G., Di Dio, E., Durrer, R.: CMB-lensing beyond the Born approximation. JCAP 09, 028 (2016). https://doi.org/10.1088/1475-7516/2016/09/028. arXiv:1605.08761 [astro-ph.CO]

    Article  ADS  MathSciNet  Google Scholar 

  40. Marozzi, G., Fanizza, G., Di Dio, E., Durrer, R.: CMB-lensing beyond the leading order: temperature and polarization anisotropies. Phys. Rev. D 98(2), 023535 (2018). https://doi.org/10.1103/PhysRevD.98.023535. arXiv:1612.07263 [astro-ph.CO]

    Article  ADS  MathSciNet  Google Scholar 

  41. Fanizza, G., Gasperini, M., Marozzi, G., Veneziano, G.: Time of flight of ultra-relativistic particles in a realistic Universe: a viable tool for fundamental physics? Phys. Lett. B 757, 505–509 (2016). https://doi.org/10.1016/j.physletb.2016.04.032. arXiv:1512.08489 [astro-ph.CO]

    Article  ADS  Google Scholar 

  42. Fanizza, G., Marozzi, G., Medeiros, M.: Gauge invariance on the light-cone: curvature perturbations and radiative degrees of freedom. JCAP 06, 015 (2023). https://doi.org/10.1088/1475-7516/2023/06/015. arXiv:2303.11743 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  43. Fröb, M.B., Lima, W.C.C.: Cosmological perturbations and invariant observables in geodesic lightcone coordinates. JCAP 01(01), 034 (2022). https://doi.org/10.1088/1475-7516/2022/01/034. arXiv:2108.11960 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  44. Mitsou, E., Fanizza, G., Grimm, N., Yoo, J.: Cutting out the cosmological middle man: General Relativity in the light-cone coordinates. Class. Quant. Gravit 38(5), 055011 (2021). https://doi.org/10.1088/1361-6382/abd681. arXiv:2009.14687 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  45. Tian, C., Carney, M.F., Mertens, J.B., Starkman, G.: Accurate relativistic observables from postprocessing light cone catalogs. Phys. Rev. D 105(6), 063511 (2022). https://doi.org/10.1103/PhysRevD.105.063511. arXiv:2110.00893 [astro-ph.CO]

    Article  ADS  MathSciNet  Google Scholar 

  46. Garriga, J., Urakawa, Y., Vernizzi, F.: \(\delta N\) formalism from superpotential and holography. JCAP 02, 036 (2016). https://doi.org/10.1088/1475-7516/2016/02/036. arXiv:1509.07339 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  47. Artigas, D., Grain, J., Vennin, V.: Hamiltonian formalism for cosmological perturbations: the separate-universe approach. JCAP 02(02), 001 (2022). https://doi.org/10.1088/1475-7516/2022/02/001. arXiv:2110.11720 [astro-ph.CO]

    Article  ADS  MathSciNet  Google Scholar 

  48. Fleury, P., Nugier, F., Fanizza, G.: Geodesic-light-cone coordinates and the Bianchi I spacetime. JCAP 06, 008 (2016). https://doi.org/10.1088/1475-7516/2016/06/008. arXiv:1602.04461 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  49. Kehagias, A., Moradinezhad Dizgah, A., Noreña, J., Perrier, H., Riotto, A.: A Consistency Relation for the Observed Galaxy Bispectrum and the Local non-Gaussianity from Relativistic Corrections. JCAP 08, 018 (2015). https://doi.org/10.1088/1475-7516/2015/08/018. arXiv:1503.04467 [astro-ph.CO]

    Article  ADS  MathSciNet  Google Scholar 

  50. Di Dio, E., Perrier, H., Durrer, R., Marozzi, G., Moradinezhad Dizgah, A., Noreña, J., Riotto, A.: Non-Gaussianities due to Relativistic Corrections to the Observed Galaxy Bispectrum. JCAP 03, 006 (2017). https://doi.org/10.1088/1475-7516/2017/03/006. arXiv:1611.03720 [astro-ph.CO]

    Article  ADS  Google Scholar 

  51. Schiavone, T., Di Dio, E., Fanizza, G.: The skewness of the distance-redshift relation in \({\Lambda }\)CDM. JCAP 02, 050 (2024). https://doi.org/10.1088/1475-7516/2024/02/050. arXiv:2307.13455 [astro-ph.CO]

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We are thankful to Danilo Artigas for useful comments on the manuscript. GM and MM are supported in part by INFN under the program TAsP (Theoretical Astroparticle Physics). GF and MM are supported by the FCT through the research project with ref. number PTDC/FIS-AST/0054/2021. GF is also member of the Gruppo Nazionale per la Fisica Matematica (GNFM) of the Istituto Nazionale di Alta Matematica (INdAM).

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed equally to the manuscript.

Corresponding author

Correspondence to Giuseppe Fanizza.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Linear \(\delta \mathcal {N}\) formalism on the light-cone

Linear \(\delta \mathcal {N}\) formalism on the light-cone

In this appendix we derive the \(\delta \mathcal {N}\) formalism at linear order in perturbation theory using the framework developed in [36, 42] and reviewed in Sect. 4. In this way we explicitly show the consistency of our results.

To begin, we linearize Eq. (97) and obtain

$$\begin{aligned} \delta \mathcal {N}&= \frac{1}{3}\ln \left[ \frac{\left( \Upsilon \sqrt{\gamma }\right) _{UD}}{\left( \Upsilon \sqrt{\gamma }\right) _{UC}}\right] +\mathcal {O}(\epsilon ^{2})\nonumber \\&= \frac{1}{3}\ln \left[ \frac{\left( \bar{\Upsilon }\sqrt{\bar{\gamma }}\right) (1+\delta \Upsilon )(1+2\nu )_{UD}}{\left( \Upsilon \sqrt{\gamma }\right) _{UC}}\right] +\mathcal {O}(\delta ^{2},\epsilon ^{2})\nonumber \\&= \frac{1}{3}\ln \left[ 1+\left( \delta \Upsilon +2\nu \right) _{UD}\right] +\mathcal {O}(\delta ^{2},\epsilon ^{2})\nonumber \,\\&= \frac{1}{3}\left( \delta \Upsilon +2\nu \right) _{UD}+\mathcal {O}(\delta ^{2},\epsilon ^{2}) \end{aligned}$$
(A1)

where we have defined

$$\begin{aligned} \Upsilon =\bar{\Upsilon }(1+\delta \Upsilon ) \end{aligned}$$
(A2)

and we recall that \((\Upsilon \sqrt{\gamma })_{UC}\) is equal to the background value, being \(\psi =0\) within the uniform curvature gauge. Also, we have used the metric in Eq. (56) and the scalar/pseudoscalar decomposition of Eq. (58). Since \(\delta \Upsilon =N/2\), we then have that

$$\begin{aligned} \delta \mathcal {N}(\lambda _{1,}\lambda _{2,}x^{i})=\frac{1}{6}\left( N+4\nu \right) _{UD} +\mathcal {O}(\delta ^{2},\epsilon ^{2}). \end{aligned}$$
(A3)

From the relation between the light-cone perturbation and the standard ones in Eq. (79), (see also [42]), one gets that

$$\begin{aligned} \psi =-\frac{1}{6}(N+4\nu ). \end{aligned}$$
(A4)

Therefore, Eq. (A3) together with Eq. (A4) and the fact that \(\psi _{UD}=\zeta \), gives the well known relation \(\delta \mathcal {N}=-\zeta \) [15].

The result obtained in Eq. (A3) proves that the \(\delta \mathcal {N}\) formalism on the past light-cone is consistent with the light-cone perturbation theory developed in [36, 42]. Thereby, the \(\delta \mathcal {N}\) formalism within the past light-cone framework, at linear order in perturbation theory, could also be obtained by starting from the results presented in Sect. 4. To this aim, one should integrate Eqs. (62) and (63), evaluating them between the uniform curvature and the uniform density slices.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fanizza, G., Marozzi, G. & Medeiros, M. \(\delta \mathcal {N}\) formalism on the past light-cone. Gen Relativ Gravit 56, 53 (2024). https://doi.org/10.1007/s10714-024-03239-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-024-03239-3

Keywords

Navigation