Skip to main content
Log in

A novel model of non-singular oscillating cosmology on flat Randall–Sundrum II braneworld

  • Research
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We obtain a novel model of oscillating non-singular cosmology on the spatially flat Randall–Sundrum (RS) II brane. At early times, the universe is dominated by a scalar field with an inflationary emergent potential \(V(\phi )=A(e^{B\phi }-1)^2\), A and B being constants. Interestingly, we find that such a scalar field can source a non-singular bounce, replacing the big bang on the brane. The turnaround again happens naturally on the brane dominated by a phantom dark energy [favoured by observations (Knop et al. in Astrophys J 598:102, 2003. Spergel et al. in Astrophys J Suppl 148:175, 2003. Tegmark et al. in Phys Rev D 69:103501, 2004) at late times], thus avoiding the big rip singularity and leading upto the following non-singular bounce via a contraction phase. There is a smooth non-singular transition of the brane universe through both the bounce and turnaround, leading to alternate expanding and contracting phases. This is the first model where a single braneworld of positive tension can be made to recycle as discussed in details in the concluding section.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availibility

This is a theoretical work and does not make use of any data for arriving at our results. However, the observation supporting our analysis have been cited in each case in the manuscript.

References

  1. Hawking, S.W.: Phys. Rev. Lett. 17, 443 (1966)

    Article  ADS  Google Scholar 

  2. Hawking, S.W., Penrose, R.: Proc. Roy. Soc. London A314, 529 (1970)

    ADS  Google Scholar 

  3. Borde, A., Guth, A.H., Vilenkin, A.: Phys. Rev. Lett. 90, 151301 (2003)

    Article  ADS  Google Scholar 

  4. J. Polchinski, String Theory, Vol. 2, Superstring Theory and Beyond (Cambridge University Press, 1998)

  5. Gambini, R., Pullin, J.: A First Course in Loop Quantum Gravity. Oxford University Press (2011)

    Book  Google Scholar 

  6. Randall, L., Sundrum, R.: Phys. Rev. Lett. 83, 4690 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  7. Shtanov, Y., Sahni, V.: Phys. Lett. B 557, 1 (2003)

    Article  ADS  Google Scholar 

  8. Ashtekar, A., Pawlowski, T., Singh, P.: Phys. Rev. D 74, 084003 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  9. Singh, P.: Class. Quantum Grav. 26, 125005 (2009)

    Article  ADS  Google Scholar 

  10. Efstathiou, G., Gratton, S.: MNRAS Lett. 496, L91 (2020)

    Article  ADS  Google Scholar 

  11. Vagnozzi, S., et al.: Phys. Dark Univ. 33, 100851 (2021)

    Article  Google Scholar 

  12. Dhawan, S., Alsing, J., Vagnozzi, S.: Mon. Not. Roy. Astron. Soc. 506, L1 (2021)

    Article  ADS  Google Scholar 

  13. R. Sengupta et al., Class. Quant. Grav. 39 105004

  14. Ellis, G.F.R., Murugan, J., Tsagas, C.G.: Class. Quant. Grav. 21, 223 (2004)

    Article  ADS  Google Scholar 

  15. Perlmutter, S.J., et al.: Nature 391, 51 (1998)

    Article  ADS  Google Scholar 

  16. Riess, A.G., et al.: Astron. J. 116, 1009 (1998)

    Article  ADS  Google Scholar 

  17. Zlatev, I., Wang, L., Steinhardt, P.J.: Phys. Rev. Lett. 82, 896 (1999)

    Article  ADS  Google Scholar 

  18. Urena-L’opez, L.A., Liddle, A.: Phys. Rev. D 66, 083005 (2002)

    Article  ADS  Google Scholar 

  19. Kamenshchik, A., Moschella, U., Pasquier, V.: Phys. Lett. B 511, 265 (2001)

    Article  ADS  Google Scholar 

  20. Debnath, U., Banerjee, A., Chakraborty, S.: Class. Quant. Grav. 21, 5609 (2004)

    Article  ADS  Google Scholar 

  21. Caldwell, R.R.: Phys. Lett. B 545, 23 (2002)

    Article  ADS  Google Scholar 

  22. Frampton, P., Takahashi, T.: Phys. Lett. B 557, 135 (2003)

    Article  ADS  Google Scholar 

  23. Dvali, G., Gabadadze, G., Porrati, M.: Phys. Lett. B 485, 208 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  24. Deffayet, C., Dvali, G., Gabadadze, G.: Phys. Rev. D 65, 044023 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  25. Nojiri, S., Odintsov, S.D.: Int. J. Geom. Methods Mod. Phys. 4, 115 (2007)

    Article  MathSciNet  Google Scholar 

  26. Knop, R.A., et al.: Astrophys. J. 598, 102 (2003)

    Article  ADS  Google Scholar 

  27. Spergel, D.N., et al.: Astrophys. J. Suppl. 148, 175 (2003)

    Article  ADS  Google Scholar 

  28. Tegmark, M., et al.: Phys. Rev. D 69, 103501 (2004)

    Article  ADS  Google Scholar 

  29. Vagnozzi, S., Loeb, A., Moresco, M.: Astrophys. J. 908, 84 (2021)

    Article  ADS  Google Scholar 

  30. Cline, J.M., Jeon, S., Moore, G.D.: Phys. Rev. D 70, 043543 (2004)

    Article  ADS  Google Scholar 

  31. Parker, L., Raval, A.: Phys. Rev. Lett. 86, 749 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  32. Caldwell, R., Kamionkowski, M., Weinberg, N.: Phys. Rev. Lett. 91, 071301 (2003)

    Article  ADS  Google Scholar 

  33. Davies, P.: Ann. Poincare Phys. Theor. 49, 297 (1988)

    Google Scholar 

  34. Sengupta, R., et al.: Phys. Rev. D 102, 024037 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  35. Visinelli, L., Bolis, N., Vagnozzi, S.: Phys. Rev. D 97, 064039 (2018)

    Article  ADS  Google Scholar 

  36. Vagnozzi, S., Visinelli, L.: Phys. Rev. D 100, 024020 (2019)

    Article  ADS  Google Scholar 

  37. Alestas, G., Kazantzidis, L., Perivolaropoulos, L.: Phys. Rev. D 101, 123516 (2020)

    Article  ADS  Google Scholar 

  38. Kanekar, N., Sahni, V., Shtanov, Y.: Phys. Rev. D 63, 083520 (2001)

    Article  ADS  Google Scholar 

  39. Banerjee, I., Paul, T., Sengupta, S.: JCAP 02, 041 (2021)

    Article  ADS  Google Scholar 

  40. Choudhury, S., Pal, S.: Phys. Rev. D. 85, 043529 (2012)

  41. Sengupta, R., Paul, P., Paul, B.C., Ray, S.: Int. J. Mod. Phys. D. 28, 1941010 (2019)

  42. Choudhury, S.: Nucl. Phys. B. 894, 29 (2015)

  43. Ijjas, A., Steinhardt, P.J.: Phys. Lett. B 795, 666 (2019)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

RS is thankful to the Inter-University Centre for Astronomy and Astrophysics (IUCAA), Pune, India for providing work facilities during a visit where this work was done. RS is thankful to the CSIR, Government of India for financial help through the CSIR-SRF Direct scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rikpratik Sengupta.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sengupta, R. A novel model of non-singular oscillating cosmology on flat Randall–Sundrum II braneworld. Gen Relativ Gravit 56, 42 (2024). https://doi.org/10.1007/s10714-024-03233-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-024-03233-9

Keywords

Navigation