Skip to main content
Log in

Hawking temperature of black holes with multiple horizons

  • Research
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

There are several well-established methods for computing thermodynamics in single-horizon spacetimes. However, understanding thermodynamics becomes particularly important when dealing with spacetimes with multiple horizons. Multiple horizons raise questions about the existence of a global temperature for such spacetimes. Recent studies highlight the significant role played by the contribution of all the horizons in determining Hawking’s temperature. Here we explore the Hawking temperature of a rotating and charged black hole in four spacetime dimensions and a rotating BTZ black hole. We also find that each horizon of those black holes contributes to the Hawking temperature. The effective Hawking temperature for a four-dimensional rotating and charged black hole depends only on its mass. This temperature is the same as the Hawking temperature of a Schwarzschild’s black hole. In contrast, the effective Hawking temperature depends on the black hole’s mass and angular momentum for a rotating BTZ hole.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hawking, S.W.: Particle creation by black holes. Commun. Math. Phys. 43, 199–220 (1975). (Erratum: Commun. Math. Phys. 46, 206 (1976))

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Parikh, M.K., Wilczek, F.: Hawking radiation as tunneling. Phys. Rev. Lett. 85, 5042–5045 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Volovik, G.E.: Effect of the inner horizon on the black hole thermodynamics: Reissner–Nordström black hole and Kerr black hole. Mod. Phys. Lett. A 36(24), 2150177 (2021)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Volovik, G.E.: Macroscopic quantum tunneling: from quantum vortices to black holes and universe. J. Exp. Theor. Phys. 135(4), 388–408 (2022)

    Article  ADS  Google Scholar 

  5. Shankaranarayanan, S.: Temperature and entropy of Schwarzschild-de Sitter space-time. Phys. Rev. D 67, 084026 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  6. Singha, C.: Thermodynamics of multi-horizon spacetimes. Gen. Relativ. Gravit. 54(4), 38 (2022)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Choudhury, T.R., Padmanabhan, T.: Concept of temperature in multi-horizon spacetimes: analysis of Schwarzschild-de Sitter metric. Gen. Relativ. Gravit. 39, 1789–1811 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Chabab, M., El Moumni, H., Khalloufi, J.: On Einstein-non linear-Maxwell–Yukawa de-sitter black hole thermodynamics. Nucl. Phys. B 963, 115305 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  9. Azarnia, S., Hashemi, S.S.: Correlation of Horizons and Black Hole Thermodynamics, vol. 11 (2021)

  10. Singha, C., Nanda, P., Tripathy, P.: Hawking radiation in multi-horizon spacetimes using Hamilton–Jacobi method. Mod. Phys. Lett. A 38(02), 2350011 (2023)

    Article  ADS  MathSciNet  Google Scholar 

  11. Birrell, N.D., Davies, P.C.W.: Quantum Fields in Curved Space. Cambridge Monographs on Mathematical Physics, p. 2. Cambridge University Press, Cambridge (1984)

    Google Scholar 

  12. Nakahara, M.: Geometry, Topology and Physics. CRC Press, Boca Raton (2003)

    MATH  Google Scholar 

  13. Parker, L.E., Toms, D.: Quantum Field Theory in Curved Spacetime: Quantized Field and Gravity. Cambridge Monographs on Mathematical Physics, p. 8. Cambridge University Press, Cambridge (2009)

    Book  Google Scholar 

  14. Hod, S.: Analytic treatment of the system of a Kerr–Newman black hole and a charged massive scalar field. Phys. Rev. D 94, 044036 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  15. Krori, K.D., Barua, M.: Surface geometry of a Kerr–Newman black hole. Phys. Rev. D 35, 1171–1175 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  16. Krori, K.D., Barua, M.: Gravitational repulsion by Kerr and Kerr–Newman black holes. Phys. Rev. D 31, 3135–3139 (1985)

    Article  ADS  Google Scholar 

  17. Babar, G.Z., Babar, A.Z., Atamurotov, F.: Optical properties of Kerr–Newman spacetime in the presence of plasma. Eur. Phys. J. C 80(8), 761 (2020). (Erratum: Eur. Phys. J. C 82, 403 (2022))

    Article  ADS  Google Scholar 

  18. Li, R., Ren, J.-R., Wei, S.-W.: Hawking radiation of Dirac particles via tunneling from Kerr black hole. Class. Quantum Gravity 25, 125016 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Kerner, R., Mann, R.B.: Fermions tunnelling from black holes. Class. Quantum Gravity 25, 095014 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Di Criscienzo, R., Vanzo, L.: Fermion tunneling from dynamical horizons. EPL 82(6), 60001 (2008)

    Article  Google Scholar 

  21. Mitra, P.: Hawking temperature from tunnelling formalism. Phys. Lett. B 648(2), 240–242 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Carlip, S.: The (2 + 1)-dimensional black hole. Class. Quantum Gravity 12, 2853 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Banados, M., Teitelboim, C., Zanelli, J.: The black hole in three-dimensional space-time. Phys. Rev. Lett. 69, 1849–1851 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Banados, M., Henneaux, M., Teitelboim, C., Zanelli, J.: Geometry of the (2+1) black hole. Phys. Rev. D 48, 1506–1525 (1993). (Erratum: Phys. Rev. D 88, 069902 (2013))

    Article  ADS  MathSciNet  Google Scholar 

  25. Li, R., Ren, J.-R.: Dirac particles tunneling from BTZ black hole. Phys. Lett. B 661, 370–372 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Dias, O.J.C., Reall, H.S., Santos, J.E.: The BTZ black hole violates strong cosmic censorship. JHEP 12, 097 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Martinez, C., Teitelboim, C., Zanelli, J.: Charged rotating black hole in three space-time dimensions. Phys. Rev. D 61, 104013 (2000)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

CS thanks the Saha Institute of Nuclear Physics (SINP) Kolkata for financial support. We thank the reviewer for all the valuable comments and suggestions that helped us to improve the manuscript’s quality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiranjeeb Singha.

Ethics declarations

Conflict of interest

We have no funding, associated data, and conflict of interest/competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

A Derivation of Eq. (25)

Equation (17) is the exact Dirac equation in curved space-time. Now to solve the equation we apply the Hamilton–Jacobi method for that we take the limit \(\hbar \rightarrow 0\) and consider the equation upto \(O(\hbar )\). Here, also we consider a mass-less charged particle, so in our case, \(m=0\). Now upon substituting the ansatz (24) into the Eq. (17), it becomes evident that within an approximation up to \(O(\hbar )\), we can neglect the spin coefficient \(\omega _\mu ^{\alpha \beta }\). So, we start with an approximated Dirac equation by neglecting the spin coefficient,

$$\begin{aligned} -i\hbar \gamma ^\alpha e^\mu _\alpha \bigg (\partial _\mu +\frac{iq}{\hbar }A_\mu \bigg )\psi =0. \end{aligned}$$
(47)

If we consider only nonzero tetrad, then the above equation reduces to the following

$$\begin{aligned} \begin{aligned}&-i\hbar \bigg (\gamma ^0 e^t_0\partial _t+\gamma ^0 e^\phi _0\partial _\phi +\gamma ^1 e^r_1\partial _r+\gamma ^2 e^\theta _2\partial _\theta +\gamma ^3 e^\phi _3\partial _\phi +\gamma ^0 e^t_0\frac{iq}{\hbar }A_t\\&\quad +\gamma ^0 e^\phi _0\frac{iq}{\hbar }A_\phi +\gamma ^3e^\phi _3\frac{iq}{\hbar }A_\phi \bigg )\psi =0. \end{aligned} \end{aligned}$$
(48)

Four Gamma matrices are

$$\begin{aligned} \begin{aligned}&\gamma ^0=\begin{pmatrix} i &{} \quad 0 &{} \quad 0 &{} \quad 0\\ 0 &{} \quad i &{} \quad 0 &{} \quad 0\\ 0 &{} \quad 0 &{} \quad -i &{} \quad 0\\ 0 &{} \quad 0 &{} \quad 0 &{} \quad -i\\ \end{pmatrix} \;\;\; \gamma ^1=\begin{pmatrix} 0 &{} \quad 0 &{} \quad 1 &{} \quad 0\\ 0 &{} \quad 0 &{} \quad 0 &{} \quad -1\\ 1 &{} \quad 0 &{} \quad 0 &{} \quad 0\\ 0 &{} \quad -1 &{} \quad 0 &{} \quad 0\\ \end{pmatrix}\\&\gamma ^2=\begin{pmatrix} 0 &{} \quad 0 &{} \quad 0 &{} \quad -i\\ 0 &{} \quad 0 &{} \quad i &{} \quad 0\\ 0 &{} \quad -i &{} \quad 0 &{} \quad 0\\ i &{} \quad 0 &{} \quad 0 &{} \quad 0\\ \end{pmatrix} \;\; \;\;\; \gamma ^3=\begin{pmatrix} 0 &{} \quad 0 &{} \quad 0 &{} \quad 1\\ 0 &{} \quad 0 &{} \quad 1 &{} \quad 0\\ 0 &{} \quad 1 &{} \quad 0 &{} \quad 0\\ 1 &{} \quad 0 &{} \quad 0 &{} \quad 0\\ \end{pmatrix}. \end{aligned} \end{aligned}$$
(49)

By inserting the values of gamma matrices, we can write the equation (48) as,

$$\begin{aligned} -i\hbar \begin{pmatrix} A &{} \quad 0 &{} \quad B &{} \quad C\\ 0 &{} \quad A &{} \quad D &{} \quad -B\\ B &{} \quad C &{} \quad -A &{} \quad 0\\ D &{} \quad -B &{} \quad 0 &{} \quad -A \\ \end{pmatrix} \begin{pmatrix} \alpha (t,r,\theta ,\phi ) \\ 0 \\ \beta (t,r,\theta ,\phi )\\ 0\\ \end{pmatrix}e^{\frac{i}{\hbar }{\mathcal {I}}(t,r,\theta ,\phi )}= \begin{pmatrix} 0 \\ 0 \\ 0\\ 0\\ \end{pmatrix}~, \end{aligned}$$
(50)

where A, B, and C are

$$\begin{aligned} \begin{aligned}&A=i\bigg (e^t_0\partial _t+e^t_0\frac{iq}{\hbar }A_t +e^\phi _0\partial _\phi +e^\phi _0\frac{iq}{\hbar }A_\phi \bigg ),\\&B=e^r_1\partial _r,\\&C= -ie^\theta _2\partial _\theta +e^\phi _3\partial _\phi +e^\phi _3\frac{iq}{\hbar }A_\phi .\\&D= ie^\theta _2\partial _\theta +e^\phi _3\partial _\phi +e^\phi _3\frac{iq}{\hbar }A_\phi ~ \end{aligned} \end{aligned}$$
(51)

Now, using the expression of A, B, C, and D in equation (50), we get

$$\begin{aligned} \begin{pmatrix} \alpha \bigg \{i(e^t_0\partial _t+e^\phi _0\partial _\phi ){\mathcal {I}}+ie^t_0qA_t+ie^\phi _0qA_\phi \bigg \} +\beta e^r_1\partial _r{\mathcal {I}}+o(\hbar )\\ \beta (ie^\theta _2 \partial _\theta {\mathcal {I}}+e^\phi _3\partial _\phi {\mathcal {I}}+qe^\phi _3A_\phi )+o(\hbar )\\ \alpha e^r_1\partial _r{\mathcal {I}}-\beta \bigg \{i(e^t_0\partial _t+e^\phi _0\partial _\phi ){\mathcal {I}} +ie^t_0qA_t+ie^\phi _0qA_\phi \bigg \}+o(\hbar )\\ \alpha (ie^\theta _2\partial _\theta {\mathcal {I}}+e^\phi _3\partial _\phi {\mathcal {I}}+qe^\phi _3A_\phi )+o(\hbar ) \end{pmatrix}e^{\frac{i}{\hbar }{\mathcal {I}}(t,r,\theta ,\phi )}=\begin{pmatrix} 0 \\ 0 \\ 0\\ 0\\ \end{pmatrix}. \end{aligned}$$
(52)

Thus, we arrive at the following four equations,

$$\begin{aligned} \begin{aligned} \alpha \bigg \{i(e^t_0\partial _t+e^\phi _0\partial _\phi ){\mathcal {I}}+ie^t_0qA_t+ie^\phi _0qA_\phi \bigg \}+\beta e^r_1\partial _r{\mathcal {I}}=0\\ \beta (ie^\theta _2 \partial _\theta {\mathcal {I}}+e^\phi _3\partial _\phi {\mathcal {I}}+qe^\phi _3A_\phi )=0\\ \alpha e^r_1\partial _r{\mathcal {I}}-\beta \bigg \{i(e^t_0\partial _t +e^\phi _0\partial _\phi ){\mathcal {I}}+ie^t_0qA_t+ie^\phi _0qA_\phi \bigg \}=0\\ \alpha (ie^\theta _2\partial _\theta {\mathcal {I}}+e^\phi _3\partial _\phi {\mathcal {I}}+qe^\phi _3A_\phi )=0. \end{aligned} \end{aligned}$$
(53)

B Derivation of Eq. (41)

Here, we apply a similar procedure for writing an approximated Dirac equation for a rotating BTZ black hole. The approximated Dirac equation for the rotating BTZ black hole spacetime is then given by,

$$\begin{aligned} \begin{aligned} -i\hbar \gamma ^\alpha e^\mu _\alpha \partial _\mu \psi =0\\ \implies -i\hbar \bigg (\gamma ^0 e^\mu _0\partial _\mu +\gamma ^1 e^\mu _1\partial _\mu +\gamma ^2 e^\mu _2\partial _\mu \bigg )\psi =0~ \end{aligned}. \end{aligned}$$
(54)

There are three gamma matrices in three dimensions \(\gamma ^i =(i\sigma ^2,\sigma ^1,\sigma ^3)\). Where \((\sigma ^1,\sigma ^2,\sigma ^3)\) are the three spin Pauli matrices. Now, considering the nonzero tetrads for BTZ black hole, we can write Eq. (54) as,

$$\begin{aligned}&-i\begin{pmatrix} e^\phi _2\partial _\phi &{} (e^t_0\partial _t+e^\phi _0\partial _\phi )+e^r_1\partial _r\\ e^r_1\partial _r-(e^t_0\partial _t+e^\phi _0\partial _\phi ) &{} - e^\phi _2\partial _\phi \end{pmatrix}\begin{pmatrix} \alpha (t,r,\phi )\\ \beta (t,r,\phi )\end{pmatrix}e^{\frac{i}{\hbar }{\mathcal {I}}(t,\theta ,\phi )}=\begin{pmatrix} 0\\ 0 \end{pmatrix}\nonumber \\&\quad \implies \begin{pmatrix} \alpha e^\phi _2\partial _\phi {\mathcal {I}}+\beta (e^r_1\partial _r{\mathcal {I}} +e^t_0\partial _t{\mathcal {I}}+e^\phi _0\partial _\phi {\mathcal {I}})+o(\hbar )\\ \alpha (e^r_1\partial _r{\mathcal {I}}-e^t_0\partial _t{\mathcal {I}}-e^\phi _0\partial _\phi {\mathcal {I}})-\beta e^\phi _2\partial _\phi {\mathcal {I}}+o(\hbar ) \end{pmatrix}e^{\frac{i}{\hbar }{\mathcal {I}}(t,\theta ,\phi )}=\begin{pmatrix} 0\\ 0 \end{pmatrix}. \end{aligned}$$
(55)

So we get a set of two equations as follows,

$$\begin{aligned} \begin{aligned} \alpha e^\phi _2\partial _\phi {\mathcal {I}}+\beta (e^r_1\partial _r{\mathcal {I}} +e^t_0\partial _t{\mathcal {I}}+e^\phi _0\partial _\phi {\mathcal {I}})=0\\ \alpha (e^r_1\partial _r{\mathcal {I}}-e^t_0\partial _t{\mathcal {I}}-e^\phi _0\partial _\phi {\mathcal {I}})-\beta e^\phi _2\partial _\phi {\mathcal {I}}=0. \end{aligned} \end{aligned}$$
(56)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singha, C., Nanda, P. & Tripathy, P. Hawking temperature of black holes with multiple horizons. Gen Relativ Gravit 55, 106 (2023). https://doi.org/10.1007/s10714-023-03154-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-023-03154-z

Keywords

Navigation