Skip to main content

Advertisement

Log in

Cosmic consequences of Barrow holographic dark energy with Granda–Oliveros cut-off in fractal cosmology

  • Research
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

In a fractal world with matter (pressureless) and dark energy, we examine the recently proposed Barrow holographic dark energy model with the Granda–Oliveros IR cutoff. We depict our model Hubble parameter evolution by comparing it with the most recent cosmic chronometer data, which consists of 31 H(z) data points with 1 \(\sigma \) error bars. Also, we compare the derived model against the concordance \(\Lambda \)CDM model by using the dimensionless Hubble parameter E(z). Additionally, we show the evolution of the distance modulus \(\mu (z)\) for the derived model and compare with the 580 data points of Type Ia Supernovae (Union 2.1 compilation) dataset. The consequences of the model are discussed through different cosmological parameters which describe that in the recent past, the transition of the universe’s expansion from the decelerated to an accelerated stage happened smoothly. Moreover, we demonstrate that this could be an answer for the thermal history of the universe, including the order of matter and dark energy phases. The equation of state for dark energy is also impacted by the new Barrow exponent \(\Delta \), which, depending on its value, may cause it to lie in the quintessence regime, the phantom regime, or undergo the phantom-divide crossing during evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

This manuscript has no associated data or the data will not be deposited.

References

  1. Copeland, E.J., Sami, M., Tsujikawa, S.: Dynamics of dark energy. Int. J. Mod. Phys. D 15, 1753–1936 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Bamba, K., Capozziello, S., Nojiri, S., Odintsov, S.D.: Dark energy cosmology: the equivalent description via different theoretical models and cosmography tests. Astrophys. Space Sci. 342, 155–228 (2012)

    Article  ADS  MATH  Google Scholar 

  3. Aghanim, N., et al.: Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 641, A6 (2020)

    Article  Google Scholar 

  4. Steinhardt, P.J., et al.: Cosmological tracking solutions. Phys. Rev. D 59, 123504 (1999)

    Article  ADS  Google Scholar 

  5. Hooft, G.: Dimensional reduction in quantum gravity, Conf. Proc. C 930308, 284-296 (1993) arXiv:gr-qc/9310026 [gr-qc]

  6. Cohen, A.G., Kaplan, D.B., Nelson, A.E.: Effective field theory, black holes, and the cosmological constant. Phys. Rev. Lett. 82, 4971 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Bousso, R.: The Holographic principle. Rev. Mod. Phys. 74, 825–874 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Susskind, L.: The world as a hologram. J. Math. Phys. 36, 6377 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Li, M.: A Model of holographic dark energy. Phys. Lett. B 603, 1 (2004)

    Article  ADS  Google Scholar 

  10. Hsu, S.D.H.: Entropy bounds and dark energy. Phys. Lett. B 594, 13–16 (2004)

    Article  ADS  Google Scholar 

  11. Wang, S., Wang, Y., Li, M.: MHolographic dark energy. Phys. Rept. 696, 1–57 (2017)

    Article  ADS  Google Scholar 

  12. Bekenstein, J.D.: Black holes and entropy. Phys. Rev. D 7, 2333–2346 (1973)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Hawking, S.W.: Particle Creation by Black Holes. Commun. Math. Phys. 43, 199–220 (1975)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Tavayef, M., Sheykhi, A., Bamba, K., Moradpour, H.: Tsallis Holographic Dark Energy. Phys. Lett. B 781, 195–200 (2018)

    Article  ADS  Google Scholar 

  15. Nojiri, S., Odintsov, S.D., Saridakis, E.N.: Modified cosmology from extended entropy with varying exponent. Eur. Phys. J. C 79(3), 242 (2019)

    Article  ADS  Google Scholar 

  16. Saridakis, E.N.: Barrow holographic dark energy. Phys. Rev. D. 102(12), 123525 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  17. Nojiri, S., Odintsov, S.D., Oikonomou, V.K., Paul, T.: Unifying holographic inflation with holographic dark energy: a covariant approach. Phys. Rev. D. 102, 023540 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  18. Moradpour, H., Ziaie, A.H., Zangeneh, M.K.: Generalized entropies and corresponding holographic dark energy models. Eur. Phys. J. C 80, 732 (2020)

    Article  ADS  Google Scholar 

  19. Ghaffari, S., Ziaie, A.H., Moradpour, H., Asghariyan, F., Feleppa, F., Tavayef, M.: Black hole thermodynamics in Sharma-Mittal generalized entropy formalism. Gen. Rel. Grav. 51, 1 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  20. Sharma, U.K.: Reconstructing Tsallis holographic phantom. Pramana 96(4), 210 (2022)

    Article  ADS  Google Scholar 

  21. Pandey, B.D., Pankaj, S.K.P., Sharma, U.K.: New Tsallis holographic dark energy. Eur. Phys. J. C 82(3), 233 (2022)

    Article  ADS  Google Scholar 

  22. Zadeh, M.A., Sheykhi, A., Moradpour, H.: Thermal stability of Tsallis holographic dark energy in nonflat universe. Gen. Rel. Grav. 51(1), 12 (2019)

    Article  ADS  MATH  Google Scholar 

  23. Drepanou, N., Lymperis, A., Saridakis, E.N., Yesmakhanova, K.: Kaniadakis holographic dark energy and cosmology. Eur. Phys. J. C 82(5), 449 (2022)

    Article  ADS  Google Scholar 

  24. Srivastava, S., Sharma, U.K., Dubey, V.C.: Exploring the new Tsallis agegraphic dark energy with interaction through statefinder. Gen. Rel. Grav. 53(4), 47 (2021)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Rovelli, C.: Black hole entropy from loop quantum gravity. Phys. Rev. Lett. 77, 3288–3291 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Kaul, R.K., Majumdar, P.: Logarithmic correction to the Bekenstein-Hawking entropy. Phys. Rev. Lett. 84, 5255–5257 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  27. Ashtekar, A., Baez, J., Corichi, A., Krasnov, K.: Quantum geometry and black hole entropy. Phys. Rev. Lett. 80, 904–907 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Mann, R.B., Solodukhin, S.N.: Quantum scalar field on three-dimensional (BTZ) black hole instanton: heat kernel, effective action and thermodynamics. Phys. Rev. D 55, 3622–3632 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  29. Radicella, N., Pavon, D.: The generalized second law in universes with quantum corrected entropy relations. Phys. Lett. B 691, 121–126 (2010)

    Article  ADS  Google Scholar 

  30. Das, S., Shankaranarayanan, S., Sur, S.: Power-law corrections to entanglement entropy of black holes. Phys. Rev. D 77, 064013 (2008)

    Article  ADS  Google Scholar 

  31. Tsallis, C.: Possible Generalization of Boltzmann-Gibbs Statistics. J. Statist. Phys. 52, 479–487 (1988)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Wilk, G., Wlodarczyk, Z.: On the interpretation of nonextensive parameter q in Tsallis statistics and Levy distributions. Phys. Rev. Lett. 84, 2770 (2000)

    Article  ADS  Google Scholar 

  33. Lyra, M.L., Tsallis, C.: Non-extensivity and multifractality in low-dimensional dissipative systems. Phys. Rev. Lett. 80, 53–56 (1998)

    Article  ADS  Google Scholar 

  34. Barrow, J.D.: The area of a rough black hole. Phys. Lett. B 808, 135643 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  35. Mamon, A.A., Paliathanasis, A., Saha, S.: Dynamics of an interacting barrow holographic dark energy model and its thermodynamic implications. Eur. Phys. J. Plus 136(1), 134 (2021)

    Article  Google Scholar 

  36. Anagnostopoulos, F.K., Basilakos, S., Saridakis, E.N.: Observational constraints on Barrow holographic dark energy. Eur. Phys. J. C 80(9), 826 (2020)

    Article  ADS  Google Scholar 

  37. Saridakis, E.N.: Modified cosmology through spacetime thermodynamics and Barrow horizon entropy. JCAP 07, 031 (2020)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Leon, G., Magaña, J., Hernández-Almada, A., García-Aspeitia, M.A., Verdugo, T., Motta, V.: Barrow entropy cosmology: an observational approach with a hint of stability analysis. JCAP 12(12), 032 (2021)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Asghari, M., Sheykhi, A.: Observational constraints of the modified cosmology through Barrow entropy. Eur. Phys. J. C 82, 388 (2022)

    Article  ADS  Google Scholar 

  40. Abreu, E.M.C., Neto, J.A.: Thermal features of Barrow corrected-entropy black hole formulation. Eur. Phys. J. C 80(8), 776 (2020)

    Article  ADS  Google Scholar 

  41. Sheykhi, A.: Barrow entropy corrections to Friedmann equations. Phys. Rev. D 103(12), 123503 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  42. Nojiri, S., Odintsov, S.D., Paul, T.: Barrow entropic dark energy: a member of generalized holographic dark energy family. Phys. Lett. B 825, 136844 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  43. Dabrowski, M.P., Salzano, V.: Geometrical observational bounds on a fractal horizon holographic dark energy. Phys. Rev. D. 102(6), 064047 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  44. Huang, Q., Huang, H., Xu, B., Tu, F., Chen, J.: Dynamical analysis and statefinder of Barrow holographic dark energy. Eur. Phys. J. C 81(8), 686 (2021)

    Article  ADS  Google Scholar 

  45. Nojiri, S., Odintsov, S.D., Faraoni, V.: From nonextensive statistics and black hole entropy to the holographic dark universe. Phys. Rev. D. 105(4), 044042 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  46. Pradhan, A., Dixit, A., Bhardwaj, V.K.: Barrow HDE model for Statefinder diagnostic in FLRW Universe. Int. J. Mod. Phys. A 36, 2150030 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  47. Srivastava, S., Sharma, U.K.: Barrow holographic dark energy with Hubble horizon as IR cutoff. Int. J. Geom. Meth. Mod. Phys. 18(01), 2150014 (2021)

    Article  MathSciNet  Google Scholar 

  48. Rani, S., Azhar, N.: Braneworld inspires cosmological implications of barrow holographic dark energy. Universe 7(8), 268 (2021)

    Article  ADS  Google Scholar 

  49. Sharma, U.K., Varshney, G., Dubey, V.C.: Barrow agegraphic dark energy. Int. J. Mod. Phys. D. 30(03), 2150021 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  50. Sharma, U.K., Kumar, M.: Barrow holographic phantom. Int. J. Geom. Meth. Mod. Phys. 19(05), 2250066 (2022)

    Article  MathSciNet  Google Scholar 

  51. Oliveros, A., Sabogal, M.A., Acero, M.A.: Barrow holographic dark energy with Granda–Oliveros cutoff. Eur. Phys. J. Plus. 137(7), 783 (2022)

    Article  Google Scholar 

  52. Jawad, A., Rani, S., Ashraf, S., Azhar, N.: Barrow holographic dark energy in deformed Hořava-Lifshitz gravity. Int. J. Geom. Meth. Mod. Phys. 19(08), 2250112 (2022)

    Article  Google Scholar 

  53. Remya, A., Pankaj, Sharma, U.K.: Cosmological parameters in Barrow holographic dark energy. Int. J. Geom. Meth. Mod. Phys. 19, 2250082 (2022)

    Article  MathSciNet  Google Scholar 

  54. Sharma, U.K., Varshney, G., Dubey, V.C., Kumar, M.: Anisotropic effect on barrow holographic dark energy. Int. J. Geom. Meth. Mod. Phys. 19(10), 2250146 (2022)

    Article  MathSciNet  Google Scholar 

  55. Mamon, A.A., Mishra, A.K., Sharma, U.K.: Barrow holographic dark energy in fractal cosmology. Int. J. Geom. Meth. Mod. Phys. 19(14), 2250231 (2022). https://doi.org/10.1142/S0219887822502310

    Article  MathSciNet  Google Scholar 

  56. Nandhida Krishnan. P., Mathew, Titus K: Barrow holographic dark energy model - a new perspective, arXiv:2112.07310 (2021)

  57. Dixit, A., Bharadwaj, V.K., Pradhan, A.: Barrow HDE model for Statefinder diagnostic in non-flat FRW universe. Chin. J. Phys. 77, 646–657 (2022)

    Article  MathSciNet  Google Scholar 

  58. Sharma, U.K., Kumar, M., Varshney, G.: Scalar field models of barrow holographic dark energy in \(f(R, T)\) gravity. Universe 8(12), 642 (2022)

    Article  ADS  Google Scholar 

  59. A. Sheykhi, M.S. Hamedan, Holographic dark energy in modified Barrow cosmology, arXiv:2211.00088 [gr-qc]

  60. Luciano, G.G.: Cosmic evolution and thermal stability of Barrow holographic dark energy in a nonflat Friedmann-Robertson-Walker Universe. Phys. Rev. D. 106(8), 083530 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  61. Calcagni, G.: Quantum field theory, gravity and cosmology in a fractal universe. J. High Energy Phys. 03, 120 (2010)

    Article  ADS  MATH  Google Scholar 

  62. Calcagni, G.: Fractal universe and quantum gravity. Phys. Rev. Lett. 104, 251301 (2010)

    Article  ADS  Google Scholar 

  63. Linde, A.D.: Eternally Existing Selfreproducing Chaotic Inflationary Universe. Phys. Lett. B 175, 395 (1986)

    Article  ADS  Google Scholar 

  64. Sadri, E., Khurshudyan, M., Chattopadhyay, S.: An interacting new holographic dark energy in the framework of fractal cosmology. Astrophys. Space Sci. 363, 230 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  65. Ghaffari, S., Sadri, E., Ziaie, A.H.: Tsallis holographic dark energy in fractal universe. Mod. Phys. Lett. A 35(14), 2050107 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  66. Mamon, A.A.: Study of Tsallis holographic dark energy model in the framework of fractal cosmology. Mod. Phys. Lett. A 35, 2050251 (2020)

    Article  MathSciNet  Google Scholar 

  67. Jawad, A., Sultan, A.M.: Cosmic consequences of Kaniadakis and generalized Tsallis holographic dark energy models in the fractal universe. Adv. High Energy Phys. 2021, 5519028 (2021)

    Article  MathSciNet  Google Scholar 

  68. Nojiri, S., Odintsov, S.D.: Unifying phantom inflation with late-time acceleration: scalar phantom-non-phantom transition model and generalized holographic dark energy. Gen. Rel. Grav. 38, 1285 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  69. Nojiri, S., Odintsov, S.D.: Covariant generalized holographic dark energy and accelerating universe. Eur. Phys. J. C 77, 528 (2017)

    Article  ADS  Google Scholar 

  70. Granda, L.N., Oliveros, A.: New infrared cut-off for the holographic scalar fields models of dark energy. Phys. Lett. B 671, 199–202 (2009)

    Article  ADS  Google Scholar 

  71. Granda, L.N., Oliveros, A.: Infrared cut-off proposal for the Holographic density. Phys. Lett. B 669, 275–277 (2008)

    Article  ADS  Google Scholar 

  72. Bolotin, Y.L., Kostenko, A., Lemets, O.A., Yerokhin, D.A.: Cosmological evolution with interaction between dark energy and dark matter. IJMPD 24, 1530007 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  73. Amendola, L.: Scaling solutions in general nonminimal coupling theories. Physi. Rev. D 60, 043501 (1999)

    Article  ADS  Google Scholar 

  74. Sahni, V., Shafieloo, A., Starobinsky, A.A.: Two new diagnostics of dark energy. Phys. Rev. D. 78, 103502 (2008)

    Article  ADS  Google Scholar 

  75. Zunckel, C., Clarkson, C.: Consistency tests for the cosmological constant. Phys. Rev. Lett. 101, 181301 (2008)

    Article  ADS  Google Scholar 

  76. Shahalam, M., Sami, S., Agarwal, A.: \(Om\) diagnostic applied to scalar field models and slowing down of cosmic acceleration. Mon. Not. Roy. Astron. Soc. 448(3), 2948–2959 (2015)

    Article  ADS  Google Scholar 

  77. Magaña, J., Amante, M.H., García-Aspeitia, M.A., Motta, V.: The Cardassian expansion revisited: constraints from updated Hubble parameter measurements and type Ia supernova data. MNRAS 476, 1036–1049 (2018)

    Article  ADS  Google Scholar 

  78. Suzuki, N., et al.: The Hubble space telescope cluster supernova survey: V. Improving the dark energy constraints above \(z > 1\) and building an early-type-hosted supernova sample. Astrophys. J. 746, 85 (2012)

    Article  ADS  Google Scholar 

  79. Nojiri, S., Odintsov, S.D., Saridakis, E.N., Myrzakulov, R.: Correspondence of cosmology from non-extensive thermodynamics with fluids of generalized equation of state. Nucl. Phys. B 950, 114850 (2020)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the anonymous referee whose useful suggestions have improved the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Umesh Kumar Sharma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al Mamon, A., Sharma, U.K., Kumar, M. et al. Cosmic consequences of Barrow holographic dark energy with Granda–Oliveros cut-off in fractal cosmology. Gen Relativ Gravit 55, 74 (2023). https://doi.org/10.1007/s10714-023-03126-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-023-03126-3

Keywords

Navigation