Skip to main content
Log in

The region interior to the event horizon of rotating regular black holes

  • Research
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

The interior of two rotating regular black holes is analyzed, Hayward and Simpson–Visser, through the velocities and fall times of a free particle that penetrates the event horizon. We apply the river model and consider that the space flows toward the black hole center; the velocity of the “river of space” is greater than light’s in the interior of the black hole. To avoid dealing with superluminal velocities that have not physical interpretation we define a peculiar velocity that is the velocity of the test particle with respect to the flow; the peculiar velocity never exceeds the speed of light. The measurements of two different observers are compared, one falling down attached to the test particle and the other being a distant observer. Travel time intervals from the event horizon to the origin, and from a distant point to the horizon are calculated and compared with Kerr’s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: It is a theoretical work and the figures were generated analytically.]

References

  1. Hayward, S.A.: Formation and evaporation of regular black holes. Phys. Rev. Lett. 96, 031103 (2006)

    Article  ADS  Google Scholar 

  2. Sakharov, A.D.: Nachal’naia stadija rasshirenija Vselennoji vozniknovenije neodnorodnosti raspredelenija veshchestva. Sov. Phys. JETP 22, 241 (1966)

    ADS  Google Scholar 

  3. Gliner, E.B.: Algebraic properties of the energy-momentum tensor and vaccum-like states of matter. Sov. Phys. JETP 22, 378 (1966)

    ADS  Google Scholar 

  4. Bardeen, J.M., Press, W.H., Teukolsky, S.A.: Rotating black holes: locally nonrotating frames, energy extraction, and scalar synchrotron radiation. Astrophys. J. 178, 347–370 (1972)

    Article  ADS  Google Scholar 

  5. Hamilton, A.J.S., Lisle, J.P.: The river model of black holes. Am. J. Phys. 76, 519 (2008)

    Article  ADS  Google Scholar 

  6. Toporensky, A.V., Zaslavskii, O.B.: Zero-momentum trajectories inside a black hole and high energy particle collisions. J. Cosmol. Astropart. Phys. 12, 063 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Doran, C.: A new form of the Kerr solution. Phys. Rev. D 61, 067503 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  8. Berti, E., Stergioulas, N.: Approximate matching of analytic and numerical solutions for rapidly rotating neutron stars. Mon. Not. R. Astron. Soc. 350, 1416–1430 (2004)

    Article  ADS  Google Scholar 

  9. Newman, E.T., Janis, A.I.: Note on the Kerr spinning particle metric. J. Math. Phys. 6, 915 (1965)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Mazza, J., Franzin, E., Liberati, S.: A novel family of rotating black hole mimickers. JCAP 04, 082 (2021)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Bambi, C., Modesto, L.: Rotating regular black holes. Phys. Lett. B 721, 329 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Simpson, A., Visser, M.: Black-bounce to traversable wormhole. JCAP 02, 042 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Painlevé, P.: La mécanique classique et la théorie de la relativité. C. R. Acad. Sci. 173, 677–680 (1921)

    ADS  MATH  Google Scholar 

  14. Gullstrand, A.: Allgemeine Lösung des statischen Einkörperproblems in der Einsteinschen Gravitationstheorie, Arkiv. Mat. Astron. Fys. 16(8) (1922)

  15. Hobson, M.P.: New form of the Kerr–Newman solution. Phys. Rev. D 107, L021501 (2023)

    Article  ADS  MathSciNet  Google Scholar 

  16. Faraoni, V., Vachon, G.: When Painlevé-Gullstrand coordinates fail. Eur. Phys. J. C 80(8), 771 (2020)

    Article  ADS  Google Scholar 

  17. Martel, K., Poisson, E.: Regular coordinate systems for Schwarzschild and other spherical spacetimes. Am. J. Phys. 69(4), 476480 (2001)

    Article  Google Scholar 

  18. Crawford, P., Tereno, I.: Generalized observers and velocity measurements in general relativity. Gen. Relativ. Gravit. 34, 2075–2088 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Perez-Roman, I., Bretón, N.: The region interior to the event horizon of the regular Hayward black hole. Gen. Relativ. Gravit. 50(6), 64 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Morris, M.S., Thorne, K.S.: Wormholes in space-time and their use for interstellar travel: a tool for teaching general relativity. Am. J. Phys. 56, 395 (1988)

    Article  ADS  MATH  Google Scholar 

  21. Morris, M.S., Thorne, K.S., Yurtsever, U.: Wormholes, time machines, and the weak energy condition. Phys. Rev. Lett. 61, 1446 (1988)

    Article  ADS  Google Scholar 

  22. Bronnikov, K.A., Walia, R.K.: Field sources for Simpson–Visser spacetime. Phys. Rev. D 105, 044039 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  23. Erbi, H.: Janis–Newman algorithm: generating rotating and NUT charged black holes. Universe 3, 19 (2017)

    Article  ADS  Google Scholar 

  24. Islam, S.U., Kumar, J., Ghosh, S.: Strong gravitational lensing by rotating Simpson–Visser black holes. J Cosmol. Astropart. Phys. 10, 013 (2021)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the detailed revision by the referees and their suggestions that lead to improve our paper. B A G-M was supported by a Postdoctoral Fellowship CONACyT 2021 of EPM. Application Number 846360.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Angelica Gonzalez-Morales.

Ethics declarations

Conflict of interest

The authors declare there is not conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gonzalez-Morales, B.A., Breton, N. & Perez-Roman, I. The region interior to the event horizon of rotating regular black holes. Gen Relativ Gravit 55, 82 (2023). https://doi.org/10.1007/s10714-023-03124-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-023-03124-5

Keywords

Navigation