Skip to main content
Log in

Global existence of classical static solutions of four dimensional Einstein–Klein–Gordon system

  • Research
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

In this paper, we prove the global existence of classical static solutions of Einstein’s gravitational theory coupled to a real scalar field where spacetime admits spherically symmetry. The equations of motions can then be reduced into a single first-order integro-differential equation. First, we obtain the decay estimates of the solutions. Then, to prove the global existence, we use the contraction mapping theorem in the appropriate function spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

This manuscript has no associated data.

Notes

  1. Equation (2.23) is the complete and the correct first-order integro-differential equation compared to Eq. (2.13) in [7] if we take \(V=-\frac{1}{p+1}|\phi |^{p+1}\).

References

  1. Carroll, S.: Spacetime and Geometry: An Introduction to General Relativity. Benjamin Cummings. ISBN: 0805387323 (2003)

  2. Christodoulou, D.: The problem of a self-gravitating scalar field. Commun. Math. Phys. 105, 337–361 (1986)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Christodoulou, D.: Global existence of generalized solutions of the spherically symmetric Einstein-scalar equations in the large. Commun. Math. Phys. 106, 587–621 (1986)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Christodoulou, D.: Examples of naked singularity formation in the gravitational collapse of a scalar field. Ann. Math. 140, 607–653 (1994). https://doi.org/10.2307/2118619

    Article  MathSciNet  MATH  Google Scholar 

  5. Christodoulou, D.: The instability of naked singularities in the gravitational collapse of a scalar field. Ann. Math. 149, 183–217 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Malec, E.: Self-gravitating nonlinear scalar fields. J. Math. Phys. 38, 3650–67 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Chae, D.: Global existence of spherically symmetric solutions to the coupled Einstein and nonlinear Klein–Gordon system. Class. Quantum Gravity 18, 4589 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Noutchegueme, N., Nangue, A.: Global existence to the Einstein-scalar field system on the Robertson–Walker space–times with hyperbolic and spherical symmetries. J. Hyperb. Differ. Equ. 7(1), 69–83 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Reiris, M.: On static solutions of the Einstein-scalar field equations. Gen. Relativ. Gravit. 49, 46 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Luk, J., Oh, S.J., Yang, S.: Solutions to the Einstein-scalar-field system in spherical symmetry with large bounded variation norms. Ann. PDE 4, 3 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  11. Costa, J.L., Mena, F.C.: Global solutions to the spherically symmetric Einstein-scalar field system with a positive cosmological constant in Bondi coordinates. J. Hyperb. Differ. Equ. 18(2), 311–341 (2021)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The work of this research is supported by PPMI FMIPA ITB 2022, PPMI KK ITB 2022, and GTA 50 ITB. B.E.G. would like to acknowledge the support from the ICTP through the Associate’s Programme (2017–2022). E.S.F. also would like to acknowledge the support from GTA Research Group ITB and from BRIN through the Research Assistant Programme 2022.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bobby Eka Gunara.

Ethics declarations

Conflict of interest

No conflict of interest in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 The \(\{00\}\) and \(\{01\}\) components of the Einstein equations

We write the \(\{00\}\) component of the Einstein equations (2.10) as follows

$$\begin{aligned} R_{00}=\frac{1}{2}g_{00}R + 8\pi T_{00}. \end{aligned}$$
(6.1)

Combining (2.2), (2.7), and (2.11), we write down Eq. (6.1) such that

$$\begin{aligned}&e^{2(F-G)}\left[ -\frac{2}{r}\partial _1 G+\frac{1}{r^2}\right] \nonumber \\&\qquad +8\pi \left[ \frac{1}{2}e^{2(F-G)}\left( \frac{\partial \phi }{\partial r}\right) ^2 - e^{2F}V(\phi )+\left( \frac{\partial \phi }{\partial u}\right) ^2-e^{F-G}\frac{\partial \phi }{\partial u}\frac{\partial \phi }{\partial r}\right] \nonumber \\&\quad =\frac{2}{r}e^{F-G}\partial _0 G. \end{aligned}$$
(6.2)

The \(\{01\}\) component of the Einstein equations (2.10) yields

$$\begin{aligned} R_{01}=\frac{1}{2}g_{01}R + 8\pi T_{01}. \end{aligned}$$
(6.3)

As previously, from (2.3), (2.7), and (2.11), we write down Eq. (6.3) as follows

$$\begin{aligned}&e^{2(F-G)}\left[ -\frac{2}{r}\partial _1G+\frac{1}{r^2}\right] +8\pi \left[ \frac{1}{2}e^{2(F-G)}\left( \frac{\partial \phi }{\partial r}\right) ^2 - e^{2F}V(\phi )\right] =0. \end{aligned}$$
(6.4)

Again, since there is no term containing the second derivative with respect to u and r on F and G, this shows that F and G are no longer dynamical. Theorem 1 ensures that the metric functions F and G do globally exist.

1.2 Estimate for (3.12)

We write the estimate of (3.12) as follows:

$$\begin{aligned} |f|\le&\left| \frac{1}{2r}\left( g-\tilde{g}\right) \bar{h}\right| + \left| 4\pi g rV(\bar{h})\bar{h}\right| +\left| \frac{gr}{2}\frac{\partial V(\bar{h})}{\partial \bar{h}}\right| \nonumber \\ =&A_1+A_2+A_3. \end{aligned}$$
(6.5)
  1. 1.

    Estimate for \(A_1\) First, we estimate

    $$\begin{aligned} |\bar{h}|\le \frac{1}{r}\int _{0}^{r}|h(u,s)|{\textrm{d}}s \le \frac{x}{(k-2)}\frac{r^{k-3}}{(1+u)^{k-2}(1+r+u)^{k-2}}. \end{aligned}$$
    (6.6)

    Then, we obtain

    $$\begin{aligned} |h(u,r)-h(u,r')|\le&\int _{r'}^{r}\left| \frac{\partial h}{\partial s}(u,s)\right| ~{\textrm{d}}s\nonumber \\ \le&x\int _{r'}^{r}\frac{1}{(1+s+u)^k}~{\textrm{d}}s\nonumber \\ \le&\frac{x}{k-1}\left[ (1+r'+u)^{-k+1}-(1+r+u)^{-k+1}\right] . \end{aligned}$$
    (6.7)

    From the above estimate, we get

    $$\begin{aligned} |(h-\bar{h})(u,r)|\le \frac{1}{r}\int _{0}^{r}|h(u,r)-h(u,r')|~{\textrm{d}}r'\le \frac{xr}{(k-1)(1+u)^{k-2}(1+r+u)^{k-1}}, \end{aligned}$$
    (6.8)

    and

    $$\begin{aligned} \int _{0}^{\infty }\frac{|h-\bar{h}|^2}{r}~{\textrm{d}}r\le&\frac{x^2 }{(k-1)^2(1+u)^{2(k-2)}}\int _{0}^{\infty }\frac{s}{(1+s+u)^{2(k-1)}}~{\textrm{d}}s\nonumber \\ =&\frac{x^2 }{(k-1)^2(12-14k+4k^2)(1+u)^{4(k-2)}}. \end{aligned}$$
    (6.9)

    From (2.20), we get

    $$\begin{aligned} g(u,0)=\exp \left[ -\int _{0}^{\infty }4\pi \frac{(h-\bar{h})^2}{s}{\textrm{d}}s\right] \ge \exp \left[ -\frac{4\pi x^2 }{(k-1)^2(12-14k+4k^2)}\right] . \end{aligned}$$
    (6.10)

    Thus,

    $$\begin{aligned} \bar{g}(u,0)=&\frac{1}{r}\int _{0}^{r}g(u,0)~{\textrm{d}}r\ge \exp \left[ -\frac{4\pi x^2 }{(k-1)^2(12-14k+4k^2)}\right] . \end{aligned}$$
    (6.11)

    Now, we estimate

    $$\begin{aligned}&|g(u,r)-g(u,r')|\le \int _{r'}^{r}\left| \frac{\partial g}{\partial s}(u,s) \right| {\textrm{d}}s\le 4\pi \int _{r'}^{r}\frac{|h-\bar{h}|^2}{s}{\textrm{d}}s\nonumber \\&\quad =\frac{\pi x^2}{3k(k-1)^2(k-2)^2} \left[ \frac{(1+u)^{4-2k}}{r'^2}+\frac{4k(1+r'+u)^{1-2k}}{1-2k}\right. \nonumber \\&\qquad +\frac{4k^2(1+r'+u)^{1-2k}}{-1+2k}+\frac{4ku(1+r'+u)^{1-2k}}{1-2k}+\frac{4k^2u(1+r'+u)^{1-2k}}{(-1+2k)}\nonumber \\&\qquad +\frac{(-1+k)(1+r'+u)^{1-2k}(1+(-1+2k)r'+u)}{-1+2k}-\frac{(1+u)^{4-2k}}{r^2}\nonumber \\&\qquad -\frac{4k(1+r+u)^{1-2k}}{1-2k}-\frac{4k^2(1+r+u)^{1-2k}}{-1+2k}-\frac{4ku(1+r+u)^{1-2k}}{1-2k}\nonumber \\&\qquad \left. -\frac{4k^2u(1+r+u)^{1-2k}}{(-1+2k)}-\frac{(-1+k)(1+r+u)^{1-2k}(1+(-1+2k)r+u)}{-1+2k}\right] , \end{aligned}$$
    (6.12)

    and

    $$\begin{aligned} |(g-\bar{g})(u,r)|\le&\frac{1}{r}\int _{0}^{r}|g(u,r)-g(u,r')|{\textrm{d}}r'\nonumber \\ =&\frac{\pi x^2 r^2}{3k(k-1)^2(k-2)^2(1+u)^{-3+2k}(1+r+u)^3}. \end{aligned}$$
    (6.13)

    We also estimate

    $$\begin{aligned} \int _{0}^{r}gs^2V(\bar{h}){\textrm{d}}s\le K_0\int _{0}^{r}gs^2|\bar{h}|^{p+1}{\textrm{d}}s\le \frac{K_0x^{p+1}r^3}{3(1+u)^{4(k-2)}(1+r+u)^3}. \end{aligned}$$
    (6.14)

    Thus, we obtain

    $$\begin{aligned} \left| g-\tilde{g}\right| \le |g-\bar{g}| + \frac{8\pi }{r}\int _{0}^{r}gs^2V(\bar{h}){\textrm{d}}s\le \frac{C(x^2+x^{p+1})r^2}{(1+u)^{-3+2k}(1+r+u)^3}. \end{aligned}$$
    (6.15)

    Estimates (3.13) and (3.21) yields

    $$\begin{aligned} A_1=\left| \frac{(g-\tilde{g})}{2r}\bar{h}\right| \le \frac{C(x^3+x^{p+2})}{(1+u)^{3k-5}(1+r+u)^3}. \end{aligned}$$
    (6.16)
  2. 2.

    Estimate for \(A_2\) Using (3.13), we obtain the estimate (6.17) as follows:

    $$\begin{aligned} A_2=\left| 4\pi grV(\bar{h})\bar{h}\right| \le \frac{Cx^{p+2}}{(1+u)^{5(k-2)}(1+r+u)^4}. \end{aligned}$$
    (6.17)
  3. 3.

    Estimate for \(A_3\) From (3.13), we obtain

    $$\begin{aligned} A_3=\left| \frac{gr}{2}\frac{\partial V(\bar{h})}{\partial \bar{h}}\right| \le \frac{Cx^p}{(1+u)^{3(k-2)}(1+r+u)^2}. \end{aligned}$$
    (6.18)

Combining (6.16)–(6.18) yields

$$\begin{aligned} |f|\le \frac{C(x^3+x^p+x^{p+2})}{(1+u)^{3(k-2)}(1+r+u)^2}. \end{aligned}$$
(6.19)

1.3 Estimate for (3.38)

We write the estimate of (3.38) as follows:

$$\begin{aligned} |f_1|\le&\left[ \frac{1}{2r}\left| \frac{\partial (g-\tilde{g})}{\partial r}\right| +\frac{1}{2r^2}|g-\tilde{g}|+\left| \frac{\partial g}{\partial r}\right| 4\pi r|V(\bar{h})\right. |\nonumber \\&\left. +4\pi g|V(\bar{h})|+4\pi g r\left| \frac{\partial V(\bar{h})}{\partial \bar{h}}\right| \left| \frac{\partial \bar{h}}{\partial r}\right| \right] \left( |{\mathcal {F}}|+|\bar{h}|\right) \nonumber \\&+\left[ \frac{1}{2r} |g-\tilde{g}|+4\pi g r|V(\bar{h})|+\frac{gr}{2}\left| \frac{\partial ^2 V(\bar{h})}{\partial \bar{h}^2}\right| \right] \left| \frac{\partial \bar{h}}{\partial r}\right| \nonumber \\&+\left[ \left| \frac{\partial g}{\partial r}\right| \frac{r}{2}+\frac{g}{2}\right] \left| \frac{\partial V(\bar{h})}{\partial \bar{h}}\right| \nonumber \\ =&(B_1+B_2+B_3+B_4+B_5)\left( \left| {\mathcal {F}}\right| +\left| \bar{h}\right| \right) + (B_6+B_7+B_8)\left| \frac{\partial \bar{h}}{\partial r}\right| + B_9. \end{aligned}$$
(6.20)
  1. 1.

    Estimate for \(B_1\) Combining (3.13), (3.19), and (3.20) yields

    $$\begin{aligned} \left| \frac{\partial \tilde{g}}{\partial r}\right| \le&\frac{C x^2 r}{(1+u)^{-3+2k}(1+r+u)^3}\nonumber \\&\quad +\frac{8\pi K_0x^{k+1}r}{3(1+u)^{4(k-2)}(1+r+u)^3}+\frac{8\pi K_0x^{p+1}r}{(1+u)^{4(k-2)}(1+r+u)^{4}}\nonumber \\ \le&\frac{C(x^2+x^{k+1}+x^{p+1})r}{(1+u)^{-3+2k}(1+r+u)^3}. \end{aligned}$$
    (6.21)

    Then, using (2.21) and (3.15), we obtain

    $$\begin{aligned} \left| \frac{\partial g}{\partial r}\right| \le \frac{4\pi x^2r }{(k-1)^2(1+u)^{2(k-2)}(1+r+u)^{2(k-1)}}. \end{aligned}$$
    (6.22)

    Thus,

    $$\begin{aligned} B_1=\frac{1}{2r}\frac{\partial |g-\tilde{g}|}{\partial r}\le \frac{C(x^2+x^{k+1}+x^{p+1})}{(1+u)^{2(k-2)}(1+r+u)^3}. \end{aligned}$$
    (6.23)
  2. 2.

    Estimate for \(B_2\) From (3.21), we obtain

    $$\begin{aligned} B_2=\frac{1}{2r^2}|g-\tilde{g}|\le \frac{C(x^2+x^{p+1})}{(1+u)^{-3+2k}(1+r+u)^3}. \end{aligned}$$
    (6.24)
  3. 3.

    Estimaste for \(B_3\) We define \(\frac{\partial \bar{h}}{\partial r}=\frac{h-\bar{h}}{r}\). From (3.13) and (3.15), we obtain

    $$\begin{aligned} B_3 =4\pi r\left| \frac{\partial g}{\partial r}\right| |V(\bar{h})|\le \frac{C x^{p+3}}{(1+u)^{6(k-2)}(1+r+u)^{2k}}. \end{aligned}$$
    (6.25)
  4. 4.

    Estimate for \(B_4\) From (3.13), we obtain

    $$\begin{aligned} B_4=4\pi g V(\bar{h})\le \frac{C x^{p+1}}{(1+u)^{4(k-2)}(1+r+u)^4}. \end{aligned}$$
    (6.26)
  5. 5.

    Estimate for \(B_5\) From (3.13) and (3.42), we obtain

    $$\begin{aligned} B_5=4\pi g r \left| \frac{\partial V(\bar{h})}{\partial \bar{h}}\right| \frac{|h-\bar{h}|}{r}\le \frac{C x^{p+1}}{(1+u)^{4(k-2)}(1+r+u)^{k+1}}. \end{aligned}$$
    (6.27)
  6. 6.

    Estimate for \(B_6\) From (3.21), we obtain

    $$\begin{aligned} B_6=\frac{1}{2r} |g-\tilde{g}|\le \frac{C(x^2+x^{p+1})r}{(1+u)^{-3+2k}(1+r+u)^3}. \end{aligned}$$
    (6.28)
  7. 7.

    Estimate for \(B_7\) From (3.13), we obtain

    $$\begin{aligned} B_7=4\pi g r V(\bar{h})\le \frac{C x^{p+1}r}{(1+u)^{4(k-2)}(1+r+u)^4}. \end{aligned}$$
    (6.29)
  8. 8.

    Estimate for \(B_8\) Again, from (3.13) we have

    $$\begin{aligned} B_8 =\frac{gr}{2}\left| \frac{\partial ^2V(\bar{h})}{\partial \bar{h}^2}\right| \le \frac{C x^{p-1}r}{(1+u)^{2(k-2)}(1+r+u)^2}. \end{aligned}$$
    (6.30)
  9. 9.

    Estimate for \(B_9\) From (3.13) and (3.42), we obtain

    $$\begin{aligned} B_9=\left[ \left| \frac{\partial g}{\partial r}\right| \frac{r}{2}+\frac{g}{2}\right] \left| \frac{\partial V(\bar{h})}{\partial \bar{h}}\right| \le \frac{C x^{p+2}r}{(1+u)^{5(k-2)}(1+r+u)^{2k}}. \end{aligned}$$
    (6.31)

Combining (6.23)–(6.31), yields

$$\begin{aligned} |f_1|\le&\frac{C(x^2+x^{k+1}+x^{p+1}+x^{p+3})}{(1+u)^{2(k-2)}(1+r+u)^3}|{\mathcal {F}}|+\frac{C(x^3+x^{k+2}+x^{p+2}+x^{p+4})}{(1+u)^{3(k-2)}(1+r+u)^4}\nonumber \\&+\frac{C(x^3+x^{p}+x^{p+2})r}{(1+u)^{3(k-2)}(1+r+u)^{k+1}}. \end{aligned}$$
(6.32)

1.4 Estimate for (4.12)

We write the estimate of (4.12) as follows:

$$\begin{aligned} |\tilde{\varphi }|\le&\frac{1}{2}\left| \tilde{g}_1-\tilde{g}_2\right| |{\mathcal {G}}_2|+\frac{1}{2r}\left| g_1-\tilde{g}_1\right| | \bar{h}_1 -\bar{h}_2|+ \frac{1}{2r}\left| g_1-\tilde{g}_1+g_2-\tilde{g}_2\right| |{\mathcal {F}}_2-\bar{h}_2|\nonumber \\&+4\pi r|g_1-g_2| |{\mathcal {F}}_1||V(\bar{h}_1)|+4\pi r|g_1-g_2||\bar{h}_1| |V(\bar{h}_1)|\nonumber \\&+4\pi r g_2\left| V(\bar{h}_1)-V(\bar{h}_2)\right| |{\mathcal {F}}_2|+4\pi r g_2|\Theta | |V(\bar{h}_1)| \nonumber \\&+ 4\pi r g_2|\bar{h}_1 - \bar{h}_2||V(\bar{h}_2)|+4\pi r g_2|\bar{h}_1|\left| V(\bar{h}_1)-V(\bar{h}_2)\right| \nonumber \\&+\frac{r}{2}|g_1-g_2||\bar{h}_1|\left| \frac{\partial ^2 V(\bar{h}_1)}{\partial \bar{h}_1^2}\right| \nonumber \\&+\frac{r}{2}g_2|\bar{h}_1-\bar{h}_2|\left| \frac{\partial ^2 V(\bar{h}_1)}{\partial \bar{h}_1^2}\right| +\frac{r}{2}g_2|\bar{h}_1|\left| \frac{\partial ^2 V(\bar{h}_1)}{\partial \bar{h}_1^2}-\frac{\partial ^2 V(\bar{h}_2)}{\partial \bar{h}_2^2}\right| \nonumber \\&{:}{=} D_1+D_2+D_3+...+D_{10}+D_{11}+D_{12}. \end{aligned}$$
(6.33)
  1. 1.

    Estimate for \(D_1\) Let us denote \(\Vert h_1-h_2\Vert _Y=y\). From the definition of mean value, we have

    $$\begin{aligned} |\bar{h}_1 - \bar{h}_2|\le&\frac{1}{r}\int _{0}^{r}|h_1-h_2|{\textrm{d}}s\nonumber \\ \le&\frac{1}{r}\int _{0}^{r}\frac{\Vert h_1-h_2\Vert _Y}{(1+s+u)^{k-1}}{\textrm{d}}s\nonumber \\ \le&\frac{y}{(k-2)}\frac{r^{k-3}}{(1+u)^{k-2}(1+r+u)^{k-2}}. \end{aligned}$$
    (6.34)

    Thus,

    $$\begin{aligned} |h_1-h_2-(\bar{h}_1-\bar{h}_2)|\le |h_1-h_2|+|\bar{h}_1-\bar{h}_2|\le \frac{Cy}{(1+u)^{k-2}(1+r+u)}. \end{aligned}$$
    (6.35)

    In view of (3.15) and (4.14), we have

    $$\begin{aligned} \left| |h_1-\bar{h}_1|^2-|h_2-\bar{h}_2|^2\right| \le&\left| (h_1-h_2)-(\bar{h}_1-\bar{h}_2) \right| \left( |h_1-\bar{h}_1|+|h_2-\bar{h}_2|\right) \nonumber \\ \le&\frac{Cxyr}{(1+u)^{2(k-2)}(1+r+u)^k}. \end{aligned}$$
    (6.36)

    Then, we estimate

    $$\begin{aligned} |g_1-g_2|\le&4\pi \int _{r}^{\infty }\frac{1}{s}\left| |h_1-\bar{h}_1|^2-|h_2-\bar{h}_2|^2\right| {\textrm{d}}s\nonumber \\ \le&\frac{Cxy}{(1+u)^{2(k-2)}(1+r+u)^{k-1}}. \end{aligned}$$
    (6.37)

    From the above estimate, we obtain

    $$\begin{aligned} |\bar{g}_1-\bar{g}_2|\le \frac{1}{r}\int _{0}^{r}|g_1-g_2|{\textrm{d}}s\le \frac{Cxy}{(1+u)^{3(k-2)}(1+r+u)}. \end{aligned}$$
    (6.38)

    Let us define

    $$\begin{aligned} \bar{h}_1^{p+1} - \bar{h}_2^{p+1}=(\bar{h}_1-\bar{h}_2)\int _{0}^{1}\left( t\bar{h}_1+(1-t)\bar{h}_2\right) \left| t\bar{h}_1+(1-t)\bar{h}_2\right| ^{p-1}{\textrm{d}}t, \end{aligned}$$
    (6.39)

    such that

    $$\begin{aligned} \left| |\bar{h}_1|^{p+1}-|\bar{h}_2|^{p+1}\right| \le&|\bar{h}_1-\bar{h}_2|\left( |\bar{h}_1|+|\bar{h}_2|\right) ^p\nonumber \\ =&\frac{2^px^py}{(k-2)^2(1+u)^{(k-2)(p+1)}(1+r+u)^{p+1}}. \end{aligned}$$
    (6.40)

    From the above estimate, we obtain

    $$\begin{aligned}&\left| \frac{8\pi }{r}\int _{0}^{r}gs^2\left( V(\bar{h}_1)-V(\bar{h}_2)\right) {\textrm{d}}s\right| \nonumber \\&\quad \le \frac{8\pi }{r}\int _{0}^{r}s^2\frac{K_02^px^py}{(k-2)^2(1+u)^{(k-2)(p+1)}(1+r+u)^{p+1}}{\textrm{d}}s\nonumber \\&\quad = \frac{K_02^{p+3}\pi x^p y r^{k-2}}{(k-2)^2(1+u)^{(k-2)(p+2)}(1+r+u)^k}. \end{aligned}$$
    (6.41)

    Combining (4.17) and (4.20), we have

    $$\begin{aligned} |\tilde{g}_1-\tilde{g}_2|\le&|\bar{g}_1-\bar{g}_2|+\left| \frac{8\pi }{r}\int _{0}^{r}gs^2\left( V(\bar{h}_1)-V(\bar{h}_2)\right) {\textrm{d}}s\right| \nonumber \\ \le&\frac{Cxy}{(1+u)^{3(k-2)}(1+r+u)}+\frac{K_02^{p+3}\pi x^p y r^{k-2}}{(k-2)^2(1+u)^{(k-2)(p+2)}(1+r+u)^k}\nonumber \\ \le&\frac{Cy(x+x^p)}{(1+u)^{3(k-2)}(1+r+u)}. \end{aligned}$$
    (6.42)

    In view of (3.47), we have

    $$\begin{aligned} D_1=&\frac{1}{2}\left| \tilde{g}_1-\tilde{g}_2\right| |{\mathcal {G}}_2|\nonumber \\ \le&\frac{Cy(x+x^p)}{(1+u)^{3(k-2)}(1+r+u)}\frac{C\left( d+x^3+x^{k+2}+x^p+x^{p+2}+x^{p+4}\right) }{\kappa ^k(1+r_1+u_1)^k}\nonumber \\&\times (1+x^2+x^{k+1}+x^{p+1}+x^{p+3})\exp \left[ C(x^2+x^4+x^{p+1})\right] . \end{aligned}$$
    (6.43)

    From (3.27), we obtain

    $$\begin{aligned} D_1\le \frac{Cy\alpha (x)}{(1+u)^{3(k-2)}(1+r+u)^{k+1}}, \end{aligned}$$
    (6.44)

    where we have denoted

    $$\begin{aligned} \alpha (x)&=C(x+x^p)\left( d+x^3+x^{k+2}+x^p+x^{p+2}+x^{p+4}\right) \\&\quad \times (1+x^2+x^{k+1}+x^{p+1}+x^{p+3})\\&\quad \times \exp \left[ C(x^2+x^4+x^{p+1})\right] . \end{aligned}$$
  2. 2.

    Estimate for \(D_2\) From (3.21), we obtain

    $$\begin{aligned} D_2=&\le \frac{1}{2r}|g_1-\tilde{g}_1||\bar{h}_1-\bar{h}_2|\nonumber \\ \le&\frac{1}{2r}\frac{C(x^2+x^{p+1})r^2}{(1+u)^{-3+2k}(1+r+u)^3}\frac{y}{(k-2)}\frac{r^{k-3}}{(1+u)^{k-2}(1+r+u)^{k-2}}\nonumber \\ \le&\frac{C(x^2+x^{p+1})y}{(1+u)^{3k-5}(1+r+u)^{k}}. \end{aligned}$$
    (6.45)
  3. 3.

    Estimate for \(D_3\) From (4.15), we obtain

    $$\begin{aligned} \left| g_1-g_2-(\bar{g}_1-\bar{g}_2) \right| \le&\frac{1}{r}\int _{0}^{r}\int _{r'}^{r}\left| \frac{\partial }{\partial r}(g_1-g_2)\right| {\textrm{d}}s{\textrm{d}}r'\nonumber \\ \le&\frac{4\pi }{r}\int _{0}^{r}\int _{r'}^{r}\frac{1}{s}\left| |h_1-\bar{h}_1|^2-|h_2-\bar{h}_2|^2\right| {\textrm{d}}s{\textrm{d}}r'\nonumber \\ \le&\frac{Cxyr}{(1+u)^{2k-3}(1+r+u)^{k-1}}. \end{aligned}$$
    (6.46)

    Thus,

    $$\begin{aligned}&\frac{1}{2r}\left| g_1-\tilde{g}_1-(g_2-\tilde{g}_2)\right| \nonumber \\&\quad \le \frac{1}{2r}\left[ \left| g_1-g_2-(\bar{g}_1-\bar{g}_2)\right| +\left| \frac{8\pi }{r}\int _{0}^{r}gs^2\left( V(\bar{h}_1)-V(\bar{h}_2)\right) {\textrm{d}}s\right| \right] \nonumber \\&\quad \le \frac{1}{2r}\left[ \frac{Cxyr}{(1+u)^{2k-3}(1+r+u)^{k-1}} +\frac{K_02^{p+3}\pi x^p y r^{k-2}}{(k-2)^2(1+u)^{(k-2)(p+2)}(1+r+u)^k}\right] \nonumber \\&\quad \le \frac{C(x+x^p)y}{(1+u)^{2k-3}(1+r+u)^{k-1}}. \end{aligned}$$
    (6.47)

    In view of (3.33), we have

    $$\begin{aligned} D_3&=\le \frac{1}{2r}\left| g_1-\tilde{g}_1-(g_2-\tilde{g}_2)\right| |{\mathcal {F}}_2|\nonumber \\&\le \frac{C(x+x^p)y}{(1+u)^{2k-3}(1+r+u)^{k-1}}\frac{C(d+x^3+x^p+x^{p+2})\exp \left[ C(x^2+x^{p+1})\right] }{\kappa ^{k-1}(1+r_1+u_1)^{k-1}}. \end{aligned}$$
    (6.48)

    From (3.27), we obtain

    $$\begin{aligned} D_3\le \frac{C y \beta (x)}{(1+u)^{2k-3}(1+r+u)^{2(k-1)}}, \end{aligned}$$
    (6.49)

    where we have denoted

    $$\begin{aligned} \beta (x)=C(x+x^p)(d+x^3+x^p+x^{p+2})\exp \left[ C(x^2+x^{p+1})\right] . \end{aligned}$$
  4. 4.

    Estimate for \(D_4\) From (4.19) and (3.33), we obtain

    $$\begin{aligned} D_4&=4\pi r g_2\left( V(\bar{h}_1)-V(\bar{h}_2)\right) |{\mathcal {F}}_2|\nonumber \\&\le \frac{K_0 r 2^px^py}{(1+u)^{p+1}(1+r+u)^{p+1}}\frac{C(d+x^3+x^p+x^{p+2})\exp \left[ C(x^2+x^{p+1})\right] }{k^2(1+r_1+u_1)^2}. \end{aligned}$$
    (6.50)

    From (3.27), we obtain

    $$\begin{aligned} D_4\le \frac{Cy \gamma (x)}{(1+u)^{4(k-2)}(1+r+u)^{k+2}}, \end{aligned}$$
    (6.51)

    where we have denoted

    $$\begin{aligned} \gamma (x)=C x^p(d+x^3+x^p+x^{p+2})\exp [C(x^2+x^{p+1})]. \end{aligned}$$
  5. 5.

    Estimate for \(D_5\) In view of (4.23) and (3.13), we get

    $$\begin{aligned} D_5&=\frac{1}{2r}\left| g_1-\tilde{g}_1-(g_2-\tilde{g}_2)\right| |\bar{h}_2|\nonumber \\&\le \frac{C(x+x^p)y}{(1+u)^{2k-3}(1+r+u)^{k-1}}\frac{x}{(k-2)(1+u)^{k-2}(1+r+u)}\nonumber \\&\le \frac{C(x^2+x^{p+1})y}{(1+u)^{3k-5}(1+r+u)^k}. \end{aligned}$$
    (6.52)
  6. 6.

    Estimate for \(D_6\) From (3.13), (6.37), and (3.33), we have

    $$\begin{aligned} D_6&=4\pi r|g_1-g_2||V(\bar{h}_1)| |{\mathcal {F}}_1|\nonumber \\&\le Cr\frac{xy}{(1+u)^{2(k-2)}(1+r+u)^{k-1}}\frac{K_0x^{p+1}}{(k-2)^{p+1}(1+u)^{(k-2)(p+1)}(1+r+u)^{p+1}}\nonumber \\&\quad \times \frac{C(d+x^3+x^p+x^{p+2})\exp \left[ C(x^2+x^{p+1})\right] }{\kappa ^{k-1}(1+r_1+u_1)^{k-1}}. \end{aligned}$$
    (6.53)

    Then, from (3.27) we obtain

    $$\begin{aligned} D_6\le \frac{Cy\sigma (x)}{(1+u)^{6(k-2)}(1+r+u)^{2k+1}}, \end{aligned}$$
    (6.54)

    where we have denoted

    $$\begin{aligned} \sigma (x)=Cx^{p+2}(d+x^3+x^p+x^{p+2})\exp [C(x^2+x^{p+1})]. \end{aligned}$$
  7. 7.

    Estimate for \(D_7\) From (3.13) and (6.37), we obtain

    $$\begin{aligned} D_7&=4\pi r|g_1-g_2||\bar{h}_1| |V(\bar{h}_1)|\nonumber \\&\le Cr \frac{xy}{(1+u)^{2(k-2)}(1+r+u)^{k-1}}\frac{x}{(k-2)(1+u)^{k-2}(1+r+u)}\nonumber \\&\quad \times \frac{K_0x^{p+1}}{(k-2)^{p+1}(1+u)^{(k-2)(p+1)}(1+r+u)^{p+1}}\nonumber \\&\le \frac{Cyx^{p+3}}{(1+u)^{7(k-2)}(1+r+u)^{3+k}}. \end{aligned}$$
    (6.55)
  8. 8.

    Estimate for \(D_8\) Estimate (3.13) and (4.13) yields

    $$\begin{aligned} D_8&=4\pi r g_2|\bar{h}_1 - \bar{h}_2||V(\bar{h}_2)|\nonumber \\&\le Cr \frac{yr^{k-3}}{(k-2)(1+u)^{k-2}(1+r+u)^{k-2}}\nonumber \\&\quad \frac{K_0x^{p+1}}{(k-2)^{p+1}(1+u)^{(k-2)(p+1)}(1+r+u)^{p+1}}\nonumber \\&\le \frac{Cyx^{p+1}}{(1+u)^{5(k-2)}(1+r+u)^4}. \end{aligned}$$
    (6.56)
  9. 9.

    Estimate for \(D_9\) From (3.13) and (4.19), we have

    $$\begin{aligned} D_9&=4\pi r g_2\left| V(\bar{h}_1)-V(\bar{h}_2)\right| |\bar{h}_1|\nonumber \\&\le \frac{4\pi K_02^px^pyr}{(k-2)^2(1+u)^{(k-2)(p+1)}(1+r+u)^{p+1}} \frac{x}{(k-2)(1+u)^{k-2}(1+r+u)}\nonumber \\&\le \frac{Cyx^{p+1}}{(1+u)^{5(k-2)}(1+r+u)^4}. \end{aligned}$$
    (6.57)
  10. 10.

    Estimate for \(D_{10}\) Again, from (3.13) and (6.37) we have

    $$\begin{aligned} D_{10}&=\frac{r}{2}|g_1-g_2||\bar{h}_1|\left| \frac{\partial ^2 V(\bar{h}_1)}{\partial \bar{h}_1^2}\right| \nonumber \\&\le Cr\frac{xy}{(1+u)^{2(k-2)}(1+r+u)^{k-1}}\nonumber \\&\quad \frac{K_0x^p}{(k-2)^p(1+u)^{p(k-2)}(1+r+u)^p}\nonumber \\&\le \frac{Cyx^{p+1}}{(1+u)^{5(k-2)}(1+r+u)^{k+1}}. \end{aligned}$$
    (6.58)
  11. 11.

    Estimate for \(D_{11}\) In view of (3.13) and (4.13), we get

    $$\begin{aligned} D_{11}&=\frac{r}{2}g_2|\bar{h}_1-\bar{h}_2|\left| \frac{\partial ^2 V(\bar{h}_2)}{\partial \bar{h}_2^2}\right| \nonumber \\&\le Cr \frac{yr^{k-3}}{(k-2)(1+u)^{k-2}(1+r+u)^{k-2}}\nonumber \\&\quad \frac{K_0x^{p-1}}{(k-2)^{p-1}(1+u)^{(k-2)(p-1)}(1+r+u)^{p-1}}\nonumber \\&\le \frac{Cyx^{p-1}}{(1+u)^{3(k-2)}(1+r+u)^2}. \end{aligned}$$
    (6.59)
  12. 12.

    Estimate for \(D_{12}\) From (4.19), we have

    $$\begin{aligned} \left| \bar{h}_1^{p-1}-\bar{h}_2^{p-1}\right|&\le |\bar{h}_1-\bar{h}_2|\left( |\bar{h}_1|+|\bar{h}_2|\right) ^{p-2}\nonumber \\&\le \frac{K_0yx^{p-2}}{(1+u)^{(k-2)(p-1)}(1+r+u)^{p-1}}. \end{aligned}$$
    (6.60)

    From the above estimate, combined with (3.13) we have

    $$\begin{aligned} D_{12}&=\frac{r}{2}g_2\left| \frac{\partial ^2 V(\bar{h}_1)}{\partial \bar{h}_1^2}-\frac{\partial ^2 V(\bar{h}_2)}{\partial \bar{h}_2^2}\right| |\bar{h}_1|\le \frac{r}{2}g_2\left| |\bar{h}_1|^{p-1}-|\bar{h}_2|^{p-1}\right| |\bar{h}_1|\nonumber \\&\le C r \frac{K_0yx^{p-2}}{(1+u)^{(k-2)(p-1)}(1+r+u)^{p-1}} \frac{x}{(k-2)(1+u)^{k-2}(1+r+u)}\nonumber \\&\le \frac{Cyx^{p-1}}{(1+u)^{3(k-2)}(1+r+u)^2}. \end{aligned}$$
    (6.61)

Thus, we have

$$\begin{aligned} |\tilde{\varphi }|\le \frac{Cy\left[ \alpha (x)+\beta (x)+\gamma (x)+\sigma (x)+x^2+x^{p-1}+x^{p+1}+x^{p+3}\right] }{(1+u)^{3(k-2)}(1+r+u)^2}, \end{aligned}$$
(6.62)

where \(\alpha (x),\beta (x),\gamma (x),\) and \(\sigma (x)\) are defined in (4.25)–(4.28) respectively.

1.5 Estimate for (5.2)

We write the estimate of (5.2) as follows:

$$\begin{aligned} \left| \frac{\partial h}{\partial u}\right|\le & {} \frac{\tilde{g}}{2}\left| \frac{\partial h}{\partial r}\right| + \frac{1}{2r}\left| g-\tilde{g}\right| \left| h\right| +\frac{1}{2r}\left| g-\tilde{g}\right| \left| \bar{h}\right| \nonumber \\{} & {} +4\pi gr\left| h\right| |V(\bar{h})|+4\pi gr|\bar{h}||V(\bar{h})|+\frac{gr}{2}\left| \frac{\partial V(\bar{h})}{\partial \bar{h}}\right| \nonumber \\:= & {} H_1+H_2+H_3+H_4+H_5+H_6. \end{aligned}$$
(6.63)
  1. 1.

    Estimate for \(H_1\) From (3.47), we have

    $$\begin{aligned} \frac{\tilde{g}}{2}\left| \frac{\partial h}{\partial r}\right| \le \frac{K_1(x)}{\kappa ^{k}(1+r_1+u_1)^{k}}\le \frac{K_1(x)}{(1+r+u)^k}, \end{aligned}$$
    (6.64)

    where we have denoted

    $$\begin{aligned} K_1(x)= & {} C(d+x^3+x^{k+2}+x^p+x^{p+2}+x^{p+4})\nonumber \\{} & {} \times (1+x^2+x^{k+1}+x^{p+1}+x^{p+3})\nonumber \\{} & {} \times \exp \left[ C(x^2+x^4+x^{p+1})\right] . \end{aligned}$$
    (6.65)
  2. 2.

    Estimate for \(H_2\) The estimate (3.33) yields

    $$\begin{aligned} \frac{1}{2r}\left| g-\tilde{g}\right| \left| h\right| \le&\frac{1}{2r} \frac{C(x^2+x^{p+1})r^2}{(1+u)^{-3+2k}(1+r+u)^3}\nonumber \\&\frac{C(d+x^3+x^p+x^{p+2})\exp \left[ C(x^2+x^{p+1})\right] }{\kappa ^{k-1}(1+r_1+u_1)^{k-1}}\nonumber \\ \le&\frac{K_2(x)}{(1+u)^{-3+2k}(1+r+u)^{k+1}}, \end{aligned}$$
    (6.66)

    where

    $$\begin{aligned} K_2(x)=C(x^2+x^{p+1})(d+x^3+x^p+x^{p+2})\exp \left[ C(x^2+x^{p+1})\right] . \end{aligned}$$
    (6.67)
  3. 3.

    Estimate for \(H_3\)

    $$\begin{aligned} \frac{1}{2r}\left| g-\tilde{g}\right| \left| \bar{h}\right| \le&\frac{1}{r}\frac{C(x^2+x^{p+1})r^2}{(1+u)^{-3+2k}(1+r+u)^3}\frac{xr^{k-3}}{(k-2)(1+u)^{k-2}(1+r+u)^{k-2}}\nonumber \\ \le&\frac{C(x^3+x^{p+2})}{(1+u)^{3k-5}(1+r+u)^k}. \end{aligned}$$
    (6.68)
  4. 4.

    Estimate for \(H_4\) Combining (3.13) and (3.33), we obtain

    $$\begin{aligned}&4\pi g r |h||V(\bar{h})|\nonumber \\&\quad \le Cr\frac{C(d+x^3+x^p+x^{p+2})\exp \left[ C(x^2+x^{p+1})\right] K_0x^{p+1}}{\kappa ^{k-1}(1+r_1+u_1)^{k-1}(k-2)^{p+1}(1+u)^{(k-2)(p+1)}(1+r+u)^{p+1}}\nonumber \\&\quad \le \frac{K_3(x)}{(1+u)^{4(k-2)}(1+r+u)^{k+2}}, \end{aligned}$$
    (6.69)

    where

    $$\begin{aligned} K_3(x)=Cx^{p+1}(d+x^3+x^p+x^{p+2})\exp \left[ C(x^2+x^{p+1})\right] . \end{aligned}$$
    (6.70)
  5. 5.

    Estimate for \(H_5\)

    $$\begin{aligned} 4\pi g r |\bar{h}||V(\bar{h})|&\le Cr \frac{xr^{k-3}}{(k-2)(1+u)^{k-2}(1+r+u)^{k-2}}\nonumber \\&\quad \frac{K_0x^{p+1}}{(k-2)^{p+1}(1+u)^{(k-2)(p+1)}(1+r+u)^{p+1}}\nonumber \\&\le \frac{Cx^{p+2}}{(1+u)^{(k-2)(p+2)}(1+r+u)^{k+1}}. \end{aligned}$$
    (6.71)
  6. 6.

    Estimate for \(H_6\) The estimate (2.9) yields

    $$\begin{aligned} \frac{gr}{2}\left| \frac{\partial V(\bar{h})}{\partial \bar{h}}\right| \le \frac{Cx^p}{(1+u)^{p(k-2)}(1+r+u)^{p-1}}. \end{aligned}$$
    (6.72)

Combining (6.64)–(6.72), we write the estimate (5.2) as follows

$$\begin{aligned} \left| \frac{\partial h}{\partial u}\right| \le \frac{C(K_1(x)+K_2(x)+K_3+x^3+x^p+x^{p+2})}{(1+r+u)^2}. \end{aligned}$$
(6.73)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wijayanto, M.P., Fadhilla, E.S., Akbar, F.T. et al. Global existence of classical static solutions of four dimensional Einstein–Klein–Gordon system. Gen Relativ Gravit 55, 19 (2023). https://doi.org/10.1007/s10714-023-03068-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-023-03068-w

Keywords

Navigation