Skip to main content
Log in

Action-complexity in GMMG and EGMG

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

In this paper, we study the holographic complexity of rotating Banados–Teitelboim–Zanelli black hole in the context of the ”Complexity-Action” conjecture and in the framework of General Minimal Massive Gravity (GMMG) and Exotic General Massive Gravity (EGMG). In addition, we investigate the action growth rate based on two kinds of conserved charges of the theories and examine the Lloyd bound on the rate of quantum computation. Then, we study the complexity of the formation of black holes in both theories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

Notes

  1. We note that our results for TMG do not agree with those obtained previously [12] for TMG.

References

  1. Susskind, L.: Fortsch. Phys. 64, 24–43 (2016). arXiv:1403.5695 [hep-th]

    Article  ADS  Google Scholar 

  2. Stanford, D., Susskind, L.: Phys. Rev. D 90(12), 126007 (2014). arXiv:1406.2678 [hep-th]

    Article  ADS  Google Scholar 

  3. Brown, A.R., Roberts, D.A., Susskind, L., Swingle, B., Zhao, Y.: Phys. Rev. Lett. 116(19), 191301 (2016). arXiv:1509.07876 [hep-th]

    Article  ADS  Google Scholar 

  4. Brown, A.R., Roberts, D.A., Susskind, L., Swingle, B., Zhao, Y.: Phys. Rev. D 93(8), 086006 (2016). arXiv:1512.04993 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  5. Couch, J., Fischler, W., Nguyen, P.H.: JHEP 03, 119 (2017). https://doi.org/10.1007/JHEP03(2017)119. arXiv:1610.02038 [hep-th]

    Article  ADS  Google Scholar 

  6. Belin, A., Myers, R.C., Ruan, S.M., Sárosi, G., Speranza, A.J.: Phys. Rev. Lett. 128, 8, 081602 (2022). https://doi.org/10.1103/PhysRevLett.128.081602. arXiv:2111.02429 [hep-th]

  7. Omidi, F.: arXiv:2207.05287 [hep-th]

  8. Lloyd, S.: Nature 406, 1047 (2000)

    Article  ADS  Google Scholar 

  9. Cai, R.G., Ruan, S.M., Wang, S.J., Yang, R.Q., Peng, R.H.: JHEP 09, 161 (2016). arXiv:1606.08307 [gr-qc]

    Article  ADS  Google Scholar 

  10. Huang, H., Feng, X.H., Lu, H.: Phys. Lett. B 769, 357–361 (2017). arXiv:1611.02321 [hep-th]

    Article  ADS  Google Scholar 

  11. Asl, B.B., Hendi, S.H., Sajadi, S.N.: Phys. Rev. D 104(10), 104034 (2021). arXiv:2102.12515 [gr-qc]

    Article  ADS  Google Scholar 

  12. Ghodrati, M.: Phys. Rev. D 96(10), 106020 (2017). arXiv:1708.07981 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  13. Alishahiha, M., Faraji Astaneh, A., Naseh, A., Vahidinia, M.H.: JHEP 05, 009 (2017). arXiv:1702.06796 [hep-th]

    Article  ADS  Google Scholar 

  14. Auzzi, R., Baiguera, S., Nardelli, G.: JHEP 06, 063 (2018). arXiv:1804.07521 [hep-th]

    Article  ADS  Google Scholar 

  15. Özkan, M., Pang, Y., Townsend, P.K.: JHEP 08, 035 (2018). arXiv:1806.04179 [hep-th]

    Article  ADS  Google Scholar 

  16. Setare, M.R.: Nucl. Phys. B 898, 259–275 (2015). arXiv:1412.2151 [hep-th]

    Article  ADS  Google Scholar 

  17. Banados, M., Teitelboim, C., Zanelli, J.: Phys. Rev. Lett. 69, 1849–1851 (1992). arXiv:hep-th/9204099 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  18. Setare, M.R., Adami, H.: Phys. Lett. B 760, 411–416 (2016). arXiv:1606.02273 [hep-th]

    Article  ADS  Google Scholar 

  19. Strominger, A.: JHEP 02, 009 (1998). arXiv:hep-th/9712251 [hep-th]

    Article  ADS  Google Scholar 

  20. Setare, M.R., Adami, H.: Phys. Lett. B 744, 280–283 (2015). arXiv:1504.01660 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  21. Bergshoeff, E.A., Merbis, W., Townsend, P.K.: Class. Quant. Grav. 37(3), 035003 (2020). arXiv:1909.11743 [hep-th]

    Article  ADS  Google Scholar 

  22. Mann, R.B., Oliva, J., Sajadi, S.N.: JHEP 05, 131 (2019). arXiv:1812.09525 [gr-qc]

    Article  ADS  Google Scholar 

  23. Giribet, G., Oliva, J.: Phys. Rev. D 99(6), 064021 (2019). arXiv:1901.08457 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  24. Setare, M.R., Oliva, J., Sajadi, S.N.: arXiv:2106.12040 [hep-th]

  25. Chapman, S., Marrochio, H., Myers, R.C.: JHEP 01, 062 (2017). https://doi.org/10.1007/JHEP01(2017)062. arXiv:1610.08063 [hep-th]

    Article  ADS  Google Scholar 

  26. Auzzi, R., Baiguera, S., Grassi, M., Nardelli, G., Zenoni, N.: JHEP 09, 013 (2018). https://doi.org/10.1007/JHEP09(2018)013. arXiv:1806.06216 [hep-th]

    Article  ADS  Google Scholar 

Download references

Acknowledgements

SNS would like to thank F. Omidi for his fruitful comments on the paper. The authors also acknowledge the support of Kurdistan University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Sajadi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Boundary term

Appendix: Boundary term

The action principle can be written in a CS−like form

$$\begin{aligned} L=\frac{1}{2}{\hat{g}}_{rs}a^{r}.da^{s}+\frac{1}{6}{\hat{f}}_{rst}a^{r}.(a^{s}\times a^{t}). \end{aligned}$$
(90)

The variation of the Lagrangian can be given as

$$\begin{aligned} \delta L=\sum E_{\phi _{i}}\delta \phi _{i} +d\Theta (\phi _{i},\delta \phi _{i}) \end{aligned}$$
(91)

where \(\phi _{i}\) indicates all the fields (metric and matter) which solve their corresponding equations of motion \(E_{\phi _{i}}\) and the presymplectic potential \(\Theta \) is defined up to add some ambiguities related to the corner terms in the action principle. For the CS—like theory of gravity, the presymplectic form is given by [18]

$$\begin{aligned} \Theta =-\dfrac{1}{2}g_{rs}\delta u^{r}.u^{s}. \end{aligned}$$
(92)

where the constant \(g_{rs}\) can be interpreted as a symmetric tensor and for GMMG is given by [21]

$$\begin{aligned} {\hat{g}}_{\omega e}=-\sigma , {\hat{g}}_{eh}=1, {\hat{g}}_{f\omega }=\frac{-1}{m^2}, {\hat{g}}_{\omega \omega }=\frac{1}{\mu }. \end{aligned}$$
(93)

By considering \(u=\lbrace e,\omega ,h,f\rbrace \), one can obtain the presymplectic form of GMMG

$$\begin{aligned} \Theta _{GMMG}=-\left( \sigma +\dfrac{c_{f}}{m^2}\right) \delta \omega .e+\dfrac{1}{2\mu }\delta \omega .\omega +c_{h}\delta e. e, \end{aligned}$$
(94)

and considering \(u=\lbrace e,\omega ,h,f\rbrace \), one can obtain the presymplectic form of EGMG

$$\begin{aligned} \Theta _{EGMG}=\dfrac{l}{2}\left[ \left( c_{h}+\dfrac{c_{f}^2}{m^4}\right) \delta e.e+\left( 1-\dfrac{\nu }{m^2}\right) \delta \omega .\omega -\dfrac{c_{f}}{m^2}\delta e.\omega \right] . \end{aligned}$$
(95)

where we have used

$$\begin{aligned} {\hat{g}}_{e h}=l, {\hat{g}}_{ff}=\dfrac{l}{m^4}, {\hat{g}}_{\omega \omega }=l\left( 1-\dfrac{\nu }{m^2}\right) , {\hat{g}}_{f\omega }=-\frac{l}{m^2}. \end{aligned}$$
(96)

Then by removing \(\delta \) from the \(\Theta \) one can achieve the Eqs. (10) and (41) for boundary terms.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sajadi, S.N., Setare, M.R. Action-complexity in GMMG and EGMG. Gen Relativ Gravit 54, 157 (2022). https://doi.org/10.1007/s10714-022-03044-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-022-03044-w

Keywords

Navigation