Skip to main content
Log in

Evolution of primordial black holes in an adiabatic FLRW universe with gravitational particle creation

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We study the evolution of primordial black holes (PBHs) in an adiabatic FLRW universe with dissipation due to bulk viscosity which is considered to be in the form of gravitational particle creation. Assuming that the process of evaporation is quite suppressed during the radiation era, we obtain an analytic solution for the evolution of PBH mass by accretion during this era, subject to an initial condition. We also obtain an upper bound on the accretion efficiency \(\epsilon \) for \(a \sim a_r\), where \(a_r\) is the point of transition from the early de Sitter era to the radiation era. Furthermore, we obtain numerical solutions for the mass of a hypothetical PBH with initial mass 100 g assumed to be formed at an epoch when the value of the Hubble parameter was, say, 1 km/s/Mpc. We consider three values of the accretion efficiency, \(\epsilon =0.23,0.5\), and 0.89 for our study. The analysis reveals that the mass of the PBH increases rapidly due to the accretion of radiation in the early stages of its evolution. The accretion continues but its rate decreases gradually with the evolution of the Universe. Finally, Hawking radiation comes into play and the rate of evaporation surpasses the accretion rate so that the PBH mass starts to decrease. As the Universe grows, evaporation becomes the dominant phenomenon, and the mass of the PBH decreases at a faster rate. As argued by Debnath and Paul [101], the evaporated mass of the PBHs might contribute towards the dark energy budget of the late Universe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: Data sharing is not applicable to this article as no new data were created in this study.]

Notes

  1. The lower limit of the integral on the right-hand side is \(a'=a_r/a_r\) which equals 1.

  2. The figure has been produced with Maple 13.

References

  1. Novikov, I.D., Polnarev, A.G., Starobinsky, A.A., Zeldovich, I.B.: Astron. Astrophys. 80, 104 (1979)

    ADS  Google Scholar 

  2. Hawking, S.W.: Mon. Not. R. Astron. Soc. 152, 75 (1971)

    Article  ADS  Google Scholar 

  3. Chapline, G.F.: Nature 253, 251 (1975)

    Article  ADS  Google Scholar 

  4. Zel’dovich, Y.B., Novikov, I.D.: Astron. Lett. 43, 758 (1966)

    Google Scholar 

  5. Carr, B.J., Hawking, S.W.: Mon. Not. R. Astron. Soc. 168, 399 (1974)

    Article  ADS  Google Scholar 

  6. Carr, B.J.: Astrophys. J. 201, 1 (1975)

    Article  ADS  Google Scholar 

  7. Bird, S., et al.: Phys. Rev. Lett. 116, 201301 (2016)

    Article  ADS  Google Scholar 

  8. [LIGO Scientific and VIRGO Collabs.] Abbot, B.P., et al.: Phys. Rev. Lett. 116, 001102 (2016)

  9. Sasaki, M., Suyama, T., Tanaka, T., Yokoyama, S.: Phys. Rev. Lett. 117, 061101 (2016)

    Article  ADS  Google Scholar 

  10. Ali-Haïmoud, Y., Kavetz, E.D., Kamionkowski, M.: Phys. Rev. D 96, 123523 (2017)

    Article  ADS  Google Scholar 

  11. Clesse, S., Garcia-Bellido, J.: Phys. Dark Univ. 15, 142 (2017)

    Article  Google Scholar 

  12. Clesse, S., Garcia-Bellido, J.: Phys. Dark Univ. 22, 137 (2018)

    Article  Google Scholar 

  13. Garcia-Bellido, J., Siles Nuño, J.F., RuizMorales, E.: Phys. Dark Univ. 31, 100791 (2020)

    Article  Google Scholar 

  14. de Luca, V., Franciolini, G., Pani, P., Riotto, A.: JCAP 06, 044 (2020)

    Article  Google Scholar 

  15. de Luca, V., Franciolini, G., Pani, P., Riotto, A.: JCAP 05, 003 (2021)

    Article  Google Scholar 

  16. Wong, K., et al.: Phys. Rev. D 103, 023026 (2021)

    Article  ADS  Google Scholar 

  17. Dolgov, A.D., et al.: JCAP 12, 017 (2020)

    Article  ADS  Google Scholar 

  18. Carr, B.J.: Phys. Rev. D 94, 083504 (2016)

    Article  ADS  Google Scholar 

  19. Green, A.M., Liddle, A.R.: Phys. Rev. D 56, 6166 (1997)

    Article  ADS  Google Scholar 

  20. Zel’dovich, Y.B., Novikov, I.D.: Sov. Astron. 10, 602 (1967)

    ADS  Google Scholar 

  21. Hawking, S.W., Moss, I.G., Stewart, J.M.: Phys. Rev. D 26, 2681 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  22. Hawking, S.W.: Phys. Lett. B 231, 237 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  23. Polnarev, A., Zembowicz, R.: Phys. Rev. D 43, 1106 (1991)

    Article  ADS  Google Scholar 

  24. Garriga, J., Vilenkin, A., Zhang, J.: JCAP 02, 064 (2016)

    Article  ADS  Google Scholar 

  25. Deng, H., Vilenkin, A.: JCAP 12, 044 (2017)

    Article  ADS  Google Scholar 

  26. Deng, H., Garriga, J., Vilenkin, A.: JCAP 04, 050 (2017)

    Article  ADS  Google Scholar 

  27. Carr, B.J., Kohri, K., Sendouda, Y., Yokoyama, J.: Phys. Rev. D 81, 104019 (2010)

    Article  ADS  Google Scholar 

  28. Hawking, S.W.: Commun. Math. Phys. 43, 199 (1975)

    Article  ADS  Google Scholar 

  29. Barrow, J.D., Copeland, E.J., Kolb, E.W., Liddle, A.R.: Phys. Rev. D 43, 977 (1991)

    Article  ADS  Google Scholar 

  30. Majumdar, A.S., Das Gupta, P., Saxena, R.P.: Int. J. Mod. Phys. D 4, 517 (1995)

    Article  ADS  Google Scholar 

  31. Upadhyay, N., Das Gupta, P., Saxena, R.P.: Phys. Rev. D 60, 063513 (1999)

    Article  ADS  Google Scholar 

  32. Khlopov, M.Y., Rubin, S.G., Sakharov, A.S.: Astropart. Phys. 23, 265 (2005)

    Article  ADS  Google Scholar 

  33. Dokuchaev, V.I., Eroshenko, Y.N., Rubin, S.G.: arXiv: 0709.0070

  34. Khlopov, M.Y.: Res. Astron. Astrophys. 10, 495 (2010)

    Article  ADS  Google Scholar 

  35. Dokuchaev, V.I., Eroshenko, Y.N., Rubin, S.G.: Astron. Rep. 52, 779 (2008)

    Article  ADS  Google Scholar 

  36. Mack, K.J., Ostriker, J.P., Ricotti, M.: Astrophys. J. 665, 1277 (2007)

    Article  ADS  Google Scholar 

  37. Sasaki, M., Suyama, T., Tanaka, T., Yokoyama, S.: Class. Quant. Grav. 35, 063011 (2018)

    Article  ADS  Google Scholar 

  38. Carr, B., Kühnel, F.: Annu. Rev. Nucl. Part. Sci. 70, 355 (2020)

    Article  ADS  Google Scholar 

  39. Carr, B., Kohri, K., Sendouda, Y., Yokoyama, J.: Rep. Prog. Phys. 84, 116902 (2021)

    Article  ADS  Google Scholar 

  40. Green, A.M., Kavanagh, B.J.: J. Phys. G 48, 4 (2021)

    Article  Google Scholar 

  41. Villanueva-Domingo, P., Mena, O., Palomares-Ruiz, S.: J. Phys. G 48, 4 (2021)

    Google Scholar 

  42. Polnarev, A.G., Khlopov, M.Y.: Sov. Phys. Usp. 28, 213 (1985)

    Article  ADS  Google Scholar 

  43. Belotsky, K.M., et al.: Mod. Phys. Lett. A 29, 1440005 (2014)

    Article  ADS  Google Scholar 

  44. Ketov, S.V., Khlopov, M.Y.: Symmetry 11, 511 (2019)

    Article  ADS  Google Scholar 

  45. Hawking, S.W.: Sci. Am. 236, 34 (1977)

    Article  ADS  Google Scholar 

  46. Barnacka, A., Glicenstein, J., Moderski, R.: Phys. Rev. D 86, 043001 (2012)

    Article  ADS  Google Scholar 

  47. Katz, A., Kopp, J., Sibiryakov, S., Xue, W.: JCAP 12, 005 (2018)

    Article  ADS  Google Scholar 

  48. Capela, F., Pshirkov, M., Tinyakov, P.: Phys. Rev. D 87, 123524 (2013)

    Article  ADS  Google Scholar 

  49. Montero-Camacho, P., Fang, X., Vasquez, G., Silva, M., Hirata, C.M.: JCAP 08, 031 (2019)

    Article  ADS  Google Scholar 

  50. Graham, P.W., Rajendran, S., Varela, J.: Phys. Rev. D 92, 063007 (2015)

    Article  ADS  Google Scholar 

  51. [EROS Collab.] Tisserand, P., et al.: Astron. Astrophys. 469, 387 (2007)

  52. [EROS & MACHO Collabs.] Alcock, C., et al.: Astrophys. J. 499, L9 (1998)

  53. Niikura, H., et al.: Nat. Astron. 3, 524 (2019)

    Article  ADS  Google Scholar 

  54. Clesse, S., Garcia-Bellido, J.: Phys. Dark Univ. 10, 142 (2017)

    Article  Google Scholar 

  55. Miguel, Zumalacárregui, M., Seljak, U.: Phys. Rev. Lett. 121, 141101 (2018)

  56. Ali-Haïmoud, Y., Kamionkowski, M.: Phys. Rev. D 95, 043534 (2017)

    Article  ADS  Google Scholar 

  57. Eroshenko, Y.: Astron. Lett. 42, 347 (2016)

    Article  ADS  Google Scholar 

  58. Boucenna, S.M., Kühnel, F., Ohlsson, T., Visinelli, L.: JCAP 07, 003 (2018)

    Article  ADS  Google Scholar 

  59. Hacyan, S.: Astrophys. J. 229, 42 (1979)

    Article  ADS  Google Scholar 

  60. Custodio, P.S., Horvath, J.E.: Phys. Rev. D 58, 023504 (1998)

    Article  ADS  Google Scholar 

  61. Custodio, P.S., Horvath, J.E.: Phys. Rev. D 60, 083002 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  62. Nayak, B., Singh, L.P.: Pramana 76, 173 (2011)

    Article  ADS  Google Scholar 

  63. Guedens, R., Clancy, D., Liddle, A.R.: Phys. Rev. D 66, 083509 (2002)

    Article  ADS  Google Scholar 

  64. Majumdar, A.S.: Phys. Rev. Lett. 90, 031303 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  65. Majumdar, A.S., Gangopadhyay, D., Singh, L.P.: Mon. Not. R. Astron. Soc. 385, 1467 (2008)

    Article  ADS  Google Scholar 

  66. Nayak, B., Singh, L.P., Majumdar, A.S.: Phys. Rev. D 80, 023529 (2009)

    Article  ADS  Google Scholar 

  67. Gunzig, E., Maartens, R., Nesteruk, A.V.: Class. Quantum Grav. 15, 923 (1998)

    Article  ADS  Google Scholar 

  68. Zimdahl, W.: Phys. Rev. D 53, 5483 (1996)

    Article  ADS  Google Scholar 

  69. Zimdahl, W.: Phys. Rev. D 61, 083511 (2000)

    Article  ADS  Google Scholar 

  70. Lima, J.A.S., Basilakos, S., Costa, F.E.M.: Phys. Rev. D 86, 103534 (2012)

    Article  ADS  Google Scholar 

  71. Chakraborty, S., Saha, S.: Phys. Rev. D 90, 123505 (2014)

    Article  ADS  Google Scholar 

  72. Saha, S., Chakraborty, S.: Gen. Relativ. Gravit. 47, 127 (2015)

    Article  ADS  Google Scholar 

  73. Mondal, A., Saha, S.: Rom. J. Phys. 63, 106 (2018)

    Google Scholar 

  74. Saha, S., Mondal, A.: Eur. Phys. J. C 77, 196 (2017); Erratum: ibid. 78, 295 (2018)

  75. Schrödinger, E.: Physica (Amsterdam) 6, 899 (1939)

    Article  ADS  Google Scholar 

  76. Parker, L.: Phys. Rev. Lett. 21, 562 (1968)

    Article  ADS  Google Scholar 

  77. Parker, L.: Phys. Rev. 183, 1057 (1969)

    Article  ADS  Google Scholar 

  78. Birrell, N.D., Davies, P.C.W.: Quantum Fields in Curved Space. Cambridge University Press, Cambridge (1982)

    Book  MATH  Google Scholar 

  79. Mukhanov, V., Winitzki, S.: Introduction to Quantum Effects in Gravity. Cambridge University Press, Cambridge (2007)

    Book  MATH  Google Scholar 

  80. Prigogine, I., Geheniau, J., Gunzig, E., Nardone, P.: Gen. Relativ. Gravit. 21, 767 (1989)

    Article  ADS  Google Scholar 

  81. Eckart, C.: Phys. Rev. 58, 919 (1940)

    Article  ADS  Google Scholar 

  82. Landau, L.D., Lifshitz, E.M.: Fluid Mechanics. Addison-Wesley, Boston (1958)

    MATH  Google Scholar 

  83. Müller, I.: Z. Phys. 198, 329 (1967)

    Article  ADS  Google Scholar 

  84. Israel, W.: Ann. Phys. (N. Y.) 100, 310 (1976)

    Article  ADS  Google Scholar 

  85. Israel, W., Stewart, J.M.: Proc. R. Soc. A 365, 43 (1979)

    ADS  Google Scholar 

  86. Israel, W., Stewart, J.M.: Ann. Phys. (N. Y.) 118, 341 (1979)

    Article  ADS  Google Scholar 

  87. Maartens, R.: arXiv: astro-ph/9609119

  88. Pavón, D., Jou, D., Casas-Vazquez, J.: Ann. Inst. Henri Poincaré A 36, 79 (1982)

    Google Scholar 

  89. Calvao, M.O., Lima, J.A.S., Waga, I.: Phys. Lett. A 162, 223 (1992)

    Article  ADS  Google Scholar 

  90. Weinberg, S.: Astrophys. J. 168, 175 (1971)

    Article  ADS  Google Scholar 

  91. Straumann, N.: Helv. Phys. Acta 60, 9 (1987)

    ADS  Google Scholar 

  92. Schweizer, M.A.: Astrophys. J. 258, 798 (1982)

    Article  ADS  Google Scholar 

  93. Udey, N., Israel, W.: Mon. Not. R. Astron. Soc. 199, 1137 (1982)

    Article  ADS  Google Scholar 

  94. Zimdahl, W.: Mon. Not. R. Astron. Soc. 280, 1239 (1996)

    Article  ADS  Google Scholar 

  95. Zel’dovich, Y.B.: Pis’ma Zh. Eksp. Teor. Fiz. 12, 443 (1970)

    ADS  Google Scholar 

  96. Zel’dovich, Y.B.: JETP Lett. 12, 307 (1970)

    ADS  Google Scholar 

  97. Murphy, G.L.: Phys. Rev. D 8, 4231 (1973)

    Article  ADS  Google Scholar 

  98. Hu, B.L.: Phys. Lett. A 90, 375 (1982)

    Article  ADS  Google Scholar 

  99. Balfagon, A.C.: Gen. Relativ. Gravit. 47, 111 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  100. https://www.maplesoft.com/support/install/maple13_install.html

  101. Debnath, U., Paul, B.C.: Astrophys. Space Sci. 355, 147 (2015)

    Article  ADS  Google Scholar 

  102. Franciolini, G., et al.: Phys. Rev. D 105, 083526 (2022)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author S.S. is grateful to Arindam Kumar Chatterjee and Bibekananda Nayak for introducing him to the excitng field of Primordial Black Holes through some informal discussions and also for drawing his attention to some important references in the field. He would also like to thank Ritabrata Biswas for a discussion on black hole accretion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhajit Saha.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saha, S., Mamon, A.A. & Saha, S. Evolution of primordial black holes in an adiabatic FLRW universe with gravitational particle creation. Gen Relativ Gravit 54, 122 (2022). https://doi.org/10.1007/s10714-022-03010-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-022-03010-6

Keywords

Navigation