Skip to main content
Log in

AdS black holes with perfect fluid dark matter and weak cosmic censorship conjecture

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

By considering the absorption of a charged particle, the thermodynamic laws and weak cosmic censorship conjecture are investigated for Reissner–Nordstöm–anti–de Sitter black holes with prefect fluid dark matter. We find that the first law of thermodynamics and the second law of thermodynamics are still valid in AdS spacetime with dark matter. In particular, we test the validity of weak cosmic censorship conjecture by studying how the minimum value of the function that determines the position of the horizon changes. As a result, it shows that there are always horizons that make the weak cosmic censorship conjecture hold, and the extreme black holes can evolve into non-extreme black holes in dark matter background.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The published work is theoretical and so no data should be deposited.]

References

  1. Hawking, S.W.: Commun. Math. Phys. 43, 199 (1975)

    Article  ADS  Google Scholar 

  2. Hawking, S.W.: Phys. Rev. D 13, 191 (1976)

    Article  ADS  Google Scholar 

  3. Bekenstein, J.D.: Phys. Rev. D 7, 2333 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  4. Bekenstein, J.D.: Phys. Rev. D 9, 3292 (1974)

    Article  ADS  Google Scholar 

  5. Setare, M.R.: Phys. Rev. D 70, 087501 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  6. Cavaglia, M., Das, S.: Class. Quantum. Grav. 21, 4511 (2004)

    Article  ADS  Google Scholar 

  7. Chen, P., Adler, R.J.: Nucl. Phys. B 124, 103 (2003)

    Article  Google Scholar 

  8. Li, H.L., Song, D.W., Li, W.: Gen. Relativ. Gravit. 51, 20 (2019)

    Article  ADS  Google Scholar 

  9. Hooft, G’t.: Nucl. Phys. B 256, 727 (1985)

  10. Cardy, J.L.: Nucl. Phys. B 270, 186 (1986)

    Article  ADS  Google Scholar 

  11. Bargueño, P., and Vagenas. E.C.: Phys. Lett. B 742, 15 (2015)

  12. Zhang, J., Zheng, Z.: J. High Energy Phys. 10, 55 (2005)

    Article  ADS  Google Scholar 

  13. Zhang, J., Fan, H.: Phys. Lett. B 648, 133 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  14. Zeng, X.X., Yang, S.Z.: Gen. Relativ. Gravit. 40, 2107 (2008)

    Article  ADS  Google Scholar 

  15. Zeng, X.X., Hou, J.S., Yang, S.Z.: Pramana 70, 409 (2008)

    Article  ADS  Google Scholar 

  16. Ruppeiner, G.: Phys. Rev. D 75, 024037 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  17. Ruppeiner, G.: Phys. Rev. D 78, 024016 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  18. Han, Y.W., Zhang, J.Y.: Phys. Lett. B 692, 74 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  19. Han, Y.W., Chen, G.: Phys. Lett. B 714, 127 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  20. Zeng, X.X., Chen, D.Y., Li. L.F.: Phys. Rev. D 91 046005 (2015)

  21. Zeng, X.X., Zhang, H.B., Li, L.F.: Phys. Lett. B 756, 170 (2016)

    Article  ADS  Google Scholar 

  22. Øyvind, Grøn, and Sigbjørn Hervik, Einstein’s General Theory of Relativity: With Modern Applications in Cosmology, Springer, 2007

  23. Penrose, R.: Gen. Relativ. Gravit. 34, 1141 (2002)

    Article  ADS  Google Scholar 

  24. Wald, R.M.: Annals Phys. 82, 548 (1974)

    Article  ADS  Google Scholar 

  25. Jacobson, T., Sotiriou, T.P.: Phys. Rev. lett. 103, 141101 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  26. Hubeny, V.E.: Phys. Rev. D 59, 064013 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  27. Bouhmadi-López, M., Cardoso, V., Nerozzi, A., Rocha, J.V.: Phy. Rev. D 81, 084051 (2010)

    Article  ADS  Google Scholar 

  28. Hod, S.: Class. Quantum. Grav. 33, 037001 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  29. Gwak, B.: Results Phys. 13, 102155 (2019)

    Article  Google Scholar 

  30. Gao, S.J., Yuan, Z.: Phys. Rev. D 87, 044028 (2013)

    Article  ADS  Google Scholar 

  31. Rocha, J.V., Santarelli, R.: Phys. Rev. D 89, 064065 (2014)

    Article  ADS  Google Scholar 

  32. Rocha, J.V., Cardoso, V.: Phys. Rev. D 83, 104037 (2011)

    Article  ADS  Google Scholar 

  33. Wald, R.M.: Int. J. Mod. Phys. D 27, 1843003 (2018)

    Article  ADS  Google Scholar 

  34. Ge, B., Mo, Y., Zhao, S.: Phys. Lett. B 783, 440 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  35. Zeng, X.X., Zhang, H.Q.: Chin. Phys. C 45, 025112 (2021)

    Article  ADS  Google Scholar 

  36. Han, Y.W., Zeng, X.X., Hong, Y.: Eur. Phys. J. C 79, 252 (2019)

    Article  ADS  Google Scholar 

  37. Zeng, X.X., Han, Y.W., Chen, D.Y.: Chin. Phys. C 43, 105104 (2019)

    Article  ADS  Google Scholar 

  38. Han, Y.W., Lan, M.J., Zeng, X.X.: Eur. Phys. J. Plus 135, 172 (2020)

    Article  Google Scholar 

  39. Chen, D.Y.: Eur. Phys. J. C 79, 353 (2019)

    Article  ADS  Google Scholar 

  40. Gwak, B., Lee, B.H.: J. Cosmol. Astropart. Phys. 015, 02 (2016)

    Google Scholar 

  41. Bahcall, N.A.: Science 284, 1481 (1999)

    Article  ADS  Google Scholar 

  42. Perlmutter, S.J., Aldering, G., Goldhaber, G., et al.: Astrophysical J. 517, 565 (2009)

    Article  ADS  Google Scholar 

  43. Sahni, V., Starobinsky, A.: Int. J. Mod. Phys. D 9, 373 (2000)

    Article  ADS  Google Scholar 

  44. Copeland, E.J., Sami, M., Tsujikawa, S.: Int. J. Mod. Phys. D 15, 1753 (2006)

    Article  ADS  Google Scholar 

  45. Stuchlik, Z.: Mod. Phys. Lett. A 20, 561 (2005)

    Article  ADS  Google Scholar 

  46. Abbott, B.P., Abbott, R., Abbott, T.D., et al.: Phys. Rev. Lett. 116, 061102 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  47. Kiselev, V.V.: Class. Quantum. Grav. 20, 1187 (2003)

    Article  ADS  Google Scholar 

  48. Kiselev, V. V.: High Energy Phys. 11 (2003) arXiv preprint arXiv:gr-qc/0303031 (2003)

  49. Li, M.H., Yang, K.C.: Phys. Rev. D 86, 123015 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported in part by the Postgraduate Education and Teaching Reform Project of Shenyang Normal University (Grant No. YJSJG320210101).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui-Ling Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Fu, ZY. & Li, HL. AdS black holes with perfect fluid dark matter and weak cosmic censorship conjecture. Gen Relativ Gravit 54, 43 (2022). https://doi.org/10.1007/s10714-022-02926-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-022-02926-3

Keywords

Navigation