Skip to main content
Log in

On the invariance in the inhomogeneous Lorentz group SO(1,3) in the context of optical vortex description

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

Recent studies of optical vortexes have elicited the need for a new kind of transformations, comprising a variety of Lorentz transformations that would embody not only translational but rotational quantities as well. The model described in this paper was motivated by a conviction in the need for a uniform approach that would enable exposition of translational and rotational motion one equal grounds—one that would have to be reflected in the very foundations of theoretical physics. This paper shows that transformations can be grounded in a generalized invariance of translational and rotational motion instead of ordinary linear invariance known from the general theory of relativity. We have proven that the geodesic principle holds in a Lorentz group parameter space for free translational and a rotational motion of a solid body. It has been demonstrated that the new transformation group would naturally lead to extending the special theory of relativity with the principles describing rotational motion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hehl, F.W., Datta, B.K.: Nonlinear spinor equation and asymmetric connection in general relativity. J. Math. Phys 12, 1334 (1971)

    Article  ADS  MathSciNet  Google Scholar 

  2. Carmeli, M.: Rotational relativity theory. Int. J. Theor. Phys. 25, 89 (1986)

    Article  MathSciNet  Google Scholar 

  3. Gitman, D.M.: Fields on the poincare group and quantum description of orientable objects. Eur. Phys. J. C. 61, 111 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  4. Ginzburg, V.L.: On the theory of spin. J. Exp. Theor. Phys. 17, 227 (1947)

    Google Scholar 

  5. Shirokov, Yu.M.: Relativistic spin theory. J. Exp. Theor. Phys. 21, 748 (1951)

    Google Scholar 

  6. Toller, M.: Free quantum fields on the Poincare group. J. Math. Phys. 37, 2694 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  7. Poplawski, N.J.: Cosmology with torsion: an alternative to cosmic inflation. Phys. Lett. B. 694, 181 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  8. Hehl, F.W.: Note on the torsion tensor. Lett. Phys. Today 60, 16 (2007)

    Article  Google Scholar 

  9. Kleinert, H.: New Gauge Symmetry in Gravity and the Evanescent Role of Torsion Electron. J. Theor. Phys. 24, 287 (2010)

    Google Scholar 

  10. Banerjee, K.: Some aspects of Holst and Nieh–Yan terms in general relativity with Torsion. Class. Quant. Grav. 27, 135012 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  11. Nay, J.F., Berry, M.V.: Dislocations in wave trains. Proc. R. Soc. London Ser. A. 336, 165 (1974)

    Article  ADS  MathSciNet  Google Scholar 

  12. Allen, L., Beijersbergen, M.W., Spreeuw, R.J.C., Woerdman, J.P.: Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes. Phys. Rev. A 45, 8185 (1992)

    Article  ADS  Google Scholar 

  13. He, H., Friese, M.E.J., Heckenberg, N.R., Rubinsztein-Dunlop, H.: Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity. Phys. Rev. Lett. 75, 826 (1995)

    Article  ADS  Google Scholar 

  14. McMorran, B.J., Agrawal, A., Anderson, I.M., Herzing, A.A., Lezec, H.J., McClell, J.J., Unguris, J.: Electron vortex beams with high quanta of orbital angular momentum. Science 331, 192 (2011)

    Article  ADS  Google Scholar 

  15. Kazak, L.A., Tolstik, A.L.: The formation, the composition and the stability of vortex optical beams of different orders. Vestnik BSU 2, 3 (2010)

    Google Scholar 

  16. Torres, J.P., Torner, L.: Twisted Photons: Applications of Light with Orbital Angular Momentum. Wiley, New York (2011)

    Book  Google Scholar 

  17. Portnov, Yu.A.: Some aspects of wave and quantum approaches at description of movement of twisted light. J. Opt. 45, 190 (2016)

    Article  Google Scholar 

  18. Yo, Arita, Mazilu, M., Dholakia, K.: Laser-induced rotation and cooling of a trapped microgyroscope in vacuum. Nat. Commun. 4, 3 (2013)

    Google Scholar 

  19. Lurcat, F.: Quantum field theory and the dynamical role of spin. Physica 1, 95 (1964)

    MathSciNet  Google Scholar 

  20. Cho, Y.M.: Higher-dimensional unifications of gravitation and gauge theories. J. Math. Phys. 16, 2029 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  21. Neeman, Y., Regge, T.: Gauge theory of gravity and supergravity on a group manifold. Revista del Nuovo Cim. 1, 1 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  22. Neeman, Y., Regge, T.: Gravity and supergravity as Gauge theories on a group manifold. Phys. Lett. 74B, 54 (1978)

    Article  ADS  Google Scholar 

  23. Toller, M.: Classical field theory in the space of reference frames. Nuovo Cim. 44B, 67 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  24. Toller, M., Vanzo, L.: Free fields on the poincare group. Lettete al Nuovo Cim 22, 345 (1978)

    Article  Google Scholar 

  25. Cognola, G., Soldati, R., Vanzo, L., Zerbini, S.: Classical non-Abelian gauge theories in the space of reference frames. J. Math. Phys. 20, 2613 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  26. Carmeli, M.: Rotational relativity theory. Int. J. Theor. Phys. 25, 89 (1986)

    Article  MathSciNet  Google Scholar 

  27. Portnov, Yu.A.: Gravitational interaction in seven-dimensional space-time. Gravit. Cosmol. 17, 152 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  28. Arnold, V.I.: Mathematical Methods of Classical Mechanics. Springer, New York (1989)

    Book  Google Scholar 

  29. Ivanov, E.N.: The theory of groups and its application in physics., Moscow (2006)

  30. Gelfand, I.M., Minlos, R.A., Ya, Shapiro Z.: Representations of the Rotation Group and the Lorentz Group, Their Applications. Nauka, Moscow (1958)

    Google Scholar 

  31. Fedorov, F.I.: The Lorentz Group. Nauka, Moscow (1979)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuriy A. Portnov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Portnov, Y.A. On the invariance in the inhomogeneous Lorentz group SO(1,3) in the context of optical vortex description. Gen Relativ Gravit 53, 11 (2021). https://doi.org/10.1007/s10714-021-02788-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-021-02788-1

Keywords

Navigation