Skip to main content
Log in

A transient phase in cosmological evolution : A multi-fluid approximation for a quasi-thermodynamical equilibrium

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

This article presents the study of a multi-species fluid characterised by a freeze-out or break-away of one or more species. Whereas single-fluid approximation suffices for modelling of the pre freeze-out period, multi-fluid approximation is required for the post freeze-out period. Embedded in this is a transition period where neither one of the two approximations is singly appropriate. We examine the thermodynamics of this fluid and find that the second law holds before, during and after the freeze-out. Our application to cosmological modelling involving interacting dark-section species indicates that the species’ equations of state are modified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The authors would like to thank the anonymous reviewer for pointing this out.

References

  1. Linde, A.: Particle Physics and Inflationary Cosmology. Harwood, Chur (1990)

    Book  Google Scholar 

  2. Liddle, A.R., Lyth, D.H.: Cosmological Inflation and Large-Scale Structure. Cambridge University Press, Cambridge (2000)

    Book  Google Scholar 

  3. Bennett, C.L., et al.: The Astrophysical Journal Supplement Series 208, 2

  4. Ryden, B.: Introduction to Cosmology. Cambridge University Press, Cambridge (2017)

    Google Scholar 

  5. Frieman, J.A., Turner, M.S., Huterer, D.: Ann. Rev. Astron. Astrophys. 46, 1 (2008)

    Article  Google Scholar 

  6. Ade, P.A.R., et al.: Astron. Astrophys. 594, 13 (2015)

    Google Scholar 

  7. Land, K., Magueijo, J.: Phys. Rev. Lett. 95, 7 (2005)

    Article  Google Scholar 

  8. Perlmutter, S., et al.: Astrophys. J. 517, 565 (1999)

    Article  ADS  Google Scholar 

  9. Riess, A.G., et al.: Astron. J. 116, 1009 (1998)

    Article  ADS  Google Scholar 

  10. Prix, R.: Phy. Rev. D 69, 43001 (2004)

    Article  ADS  Google Scholar 

  11. Eckart, C.: Phys. Rev. 58, 267 (1940)

    Article  ADS  Google Scholar 

  12. Hiscock, W.A., Lindblom, L.: Phys. Rev. D 31L, 725 (1985)

    Article  ADS  Google Scholar 

  13. Landau, L., Lifshitz, E.M.: Fluid Mechanics, p. 127. Addison-Wesley, Reading (1958)

    Google Scholar 

  14. Carter, B.: In: Anile, A., Choquet-Bruhat, M. (eds.) Relativistic Fluid Dynamics (Nato, 1987). Springer, Heidelberg (1989)

    Google Scholar 

  15. Priou, D.: Phys. Rev. D 43, 4 (1991)

    Article  MathSciNet  Google Scholar 

  16. Israel, W.: Ann. Phys. 100, 310 (1976)

    Article  ADS  Google Scholar 

  17. Israel, W., Stewart, J.M.: Ann. Phys. 118, 341 (1979)

    Article  ADS  Google Scholar 

  18. Mueller, I.: Living Rev. Relativ. 2, 1 (1999)

    Article  ADS  Google Scholar 

  19. Carter, B.: In: M. Cahen, R. Debever, J. Geheniau (eds), Journees Relativistes, Universite Libre de Bruxelles, (1976)

  20. Andersson, N., Comer, G.L.: Living Rev. Relativ. 10, 1 (2007)

    Article  ADS  Google Scholar 

  21. Maartens, R.: arXiv:astro-ph/9609119

  22. Jamil, M., et al.: Phys. Rev. D 81, 023007 (2010)

    Article  ADS  Google Scholar 

  23. Osano, B.: The thermodynamics of relativistic multi-fluid systems, LHEP 3(1), (2020)

  24. Rindler, W.: MNRAS 116, 662 (1956)

    Article  ADS  MathSciNet  Google Scholar 

  25. Akbar, A., Cai, R.-G.: Phy. Rev. D 75, 084003 (2007)

    Article  ADS  Google Scholar 

  26. Bak, D., Rey, S.J.: Class. Quantum Grav. 17, L83 (2000)

    Article  Google Scholar 

  27. Hayward, S.A., Mukohyama, S., Ashworth, M.C.: Phys. Lett. A 256, 347 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  28. Hayward, S.A.: Class. Quantum Grav. 15, 3147 (1998)

    Article  ADS  Google Scholar 

  29. Padmanabhan, T.: Gen. Rel. Grav. 34, (2002)

  30. Mukhopadhyay, A., Padmanabhan, T.: Phys. Rev. D 74, 124023 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  31. Padmanabhan, T.: In: AIP Conference Proceedings, 1241 (2010)

  32. Padmanabhan, T.: Phys. Rep. 49, 406 (2005)

    Google Scholar 

  33. Paranjape, A., Sarkar, S., Padmanabhan, T.: Phys. Rev. D 74, 104015 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  34. Jacobson, T.: Phys. Rev. Lett. 75, (1995)

  35. Cai, R.G., Kim, S.P.: J. High Energy Phys. 2, 050 (2005)

    Article  ADS  Google Scholar 

  36. Lima, J.A.S., Pereira, S.H.: Phys. Rev. D 78, 083504 (2008)

    Article  ADS  Google Scholar 

  37. Padmanabhan, T.: Phys. Rev. D 83, 044048 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bob Osano.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

A The Mueller-Israel-Stewart (MIS)Theory

The Mueller-Israel-Stewart (MIS) theory was developed for single-fluid approximation [16,17,18]. the main parameters are the energy-momentum tensor, \(T^{\mu \nu }\), and the particel 4-current, \(N^{\nu }\), subject to the conservation laws \(\nabla _{\mu }T^{\mu \nu }=0, \nabla _{\mu }N^{\mu }=0.\) Given the 4-velocity, \(u^{\mu }\), and the projection tensor, \(h^{\mu \nu }=g^{\mu \nu }+u^{\mu }u^{\nu }\), the two state parameters decompose into

$$\begin{aligned} N^{\mu }= & {} \mathbf{n} u^{\mu }+n^{\mu } \end{aligned}$$
(25)
$$\begin{aligned} T^{\mu \nu }= & {} \rho u^{\mu }u^{\nu }+Ph^{\mu \nu }+2u^{(\mu }q^{\nu )}+\pi ^{\mu \nu }, \end{aligned}$$
(26)

where \(\mathbf{n}=N^{\mu }u_{\mu }\) is the particle number density and \(n^{\mu }\) is the diffusion current. \(\rho =u_{\nu }u_{\mu }T^{\nu \mu }\) is the energy density, P is the aggregate of the equilibrium, p, and the bulk viscosity pressures, \(\varPi \). The aggregate gives the isotropic pressure. The anisotropic pressure is given by \(\pi ^{\nu \mu }\) while \(q^{\mu }\) is the heat flux vector. The extra quantities, \( q^{\mu },\pi ^{\mu }, \varPi \) are the dissipative quantities. But this theory is for short range interactions within hydrodynamics regime. It’s extension to multifluid, which extends beyond the hydrodynamics regime, is considered in [23]. We will refer to this as the extended MIS theory. In this extended theory, the primary extensive parameters are taken to be the species number flux current \(N^{\mu }_{i}\), the stress momentum tensor \(T^{\mu \nu }_{(i)}\), and the entropy flux vector \(S^{\mu }_{(i)}\). In this case, the total stress-energy momentum is conserved but not the individual i.e. \(\nabla _{\mu }T^{\mu \nu }=\nabla _{\mu }(\sum _{i}T^{\mu \nu }_{(i)} +\bar{T}^{\mu \nu })=0\ne \nabla _{\mu }T^{\mu \nu }_{(i)}\), where \(\bar{T}^{\mu \nu }\) is the momentum due to the interactions. The decompositions take the form;

$$\begin{aligned} N^{\mu }_{(i)}=\mathbf{n}_{(i)}u^{\mu }+n^{\mu }_{(i)}, \end{aligned}$$
(27)

where \(\mathbf{n}_{i}\) is the species number density and \(n^{\mu }_{i}\) is the species diffusion current. Similarly

$$\begin{aligned} T^{\mu \nu }_{(i)}=\rho _{(i)}u^{\mu }u^{\nu }+p_{(i)}h^{\mu \nu } +2u^{(\mu }_{(i)}q^{\nu )}_{(i)}+\pi ^{\mu \nu }_{(i)}, \end{aligned}$$
(28)

where \(h^{\mu \nu }=g^{\mu \nu }+u^{\mu }u^{\nu }\) is the projection tensor to the rest frame of the various fluid species. This projection is only applicable upon the separation of species. Here too, \(\rho _{(i)}=u_{\nu }u_{\mu }T^{\nu \mu }_{(i)}\) is the energy density, \(p_{(i)}\) is the isotropic pressure, \(\pi ^{\nu \mu }_{(i)}\) is the anisotropic pressure, \(q^{\mu }_{(i)}\) is the heat flux vector. The use of different velocities have also been considered in single-fluid approximation, for example in the comparison of the energy and the particle frames in [16], or the rest frame and the boosted frame in [37]. The entropy vector takes the form:

$$\begin{aligned} S^{\mu }_{(i)}= & {} s_{(i)}u^{\mu }+s^{\mu }_{(i)} \end{aligned}$$
(29)
$$\begin{aligned}= & {} s_{(i)}u^{\mu }_{(i)}+\frac{q^{\mu }}{T}\nonumber \\&-\left( \beta _{(i)}\varPi ^2+\beta _{1(i)}q_{(i)\nu }q^{\nu }_{(i)} +\beta _{2(i)}\pi _{(i)\gamma \delta }\pi ^{\gamma \delta }_{(i)}\right) \frac{u^{\mu }}{2T}\nonumber \\&+\left( \alpha _{0(i)}\varPi q^{\mu }_{(i)}+\alpha _{1(i)}\pi ^{\mu \nu }_{(i)}q_{(i)\nu }\right) \frac{1}{T}. \end{aligned}$$
(30)

\(s_{(i)}\) is the entropy density, \(s^{\mu }_{(i)}\) is the entropy flux with respect to \(u^{\mu }\) such that \(s_{\mu (i)}u^{\mu }=0\). \(\varPi _{(i)}\) is the bulk viscosity. The complexity of the detailed interactions is immense but tractable as will be demonstrated in [23]. In this regard, the total entropy vector takes the phenomenological expressions

$$\begin{aligned} S^{\mu }=\sum _{i}S^{\mu }_{i}+\bar{S}^{\mu }, \end{aligned}$$
(31)

where, as in the stress-energy-momentum tensor, the term with the bar denotes interaction effects. It is important to reflect on the dynamics and changes that take place in this approximation. We postulate that there is a gradual change that sees the terms with the bars being important at \(t_{qe}\) to having no effect at some \(t>t_{qe}\). In other words, transiting to truly separate fluids requiring a full multifluid approximation. We now consider an application to cosmology.

B An evolving apparent horizon

We gave a definition of the horizon radius

$$\begin{aligned} {\tilde{r}}_{A}= & {} \frac{1}{\sqrt{H^2+\frac{\kappa }{a^2}}} \end{aligned}$$
(32)

in section (2). It will be noticed that one can replace the radius using Eq.(3). In particular,

$$\begin{aligned} H^2+\frac{\kappa }{a^2}= & {} \frac{1}{{\tilde{r}}^{2}_{A}} =\frac{1}{3}(\rho _{DE}+\rho _{M}+\rho _{\chi }). \end{aligned}$$
(33)

The evolution with respect to proper time, t, yields

$$\begin{aligned} \frac{d}{dt} \left( H^{2}+\frac{\kappa }{a^2} \right)= & {} -2\frac{{\dot{{\tilde{r}}}}_{A}}{{\tilde{r}}^3_{A}}\nonumber \\= & {} \frac{1}{3}({\dot{\rho }}_{DE}+{\dot{\rho }}_{DM}+{\dot{\rho }}_{X}), \end{aligned}$$
(34)

from which it follows that

$$\begin{aligned} {\dot{{\tilde{r}}}}_{A}= & {} -\frac{{\tilde{r}}^3_{A}}{6}({\dot{\rho }}_{DE}+{\dot{\rho }}_{DM} +{\dot{\rho }}_{\chi }) \end{aligned}$$
(35)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Osano, B., Oreta, T. A transient phase in cosmological evolution : A multi-fluid approximation for a quasi-thermodynamical equilibrium. Gen Relativ Gravit 52, 42 (2020). https://doi.org/10.1007/s10714-020-02694-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-020-02694-y

Navigation