Skip to main content
Log in

LRS Bianchi I model with constant deceleration parameter

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

An LRS Bianchi I model is considered with constant deceleration parameter, \(q=\alpha -1\), where \(\alpha \ge 0\) is a constant. The physical and kinematical behaviour of the models for \(\alpha =0\) and \(\alpha \ne 0\) is studied in detail. The model with \(\alpha =0\) describes late time acceleration, but eternal inflation demands a violation of the NEC and WEC. The acceleration is caused by phantom matter which approaches a cosmological constant at late times. The solutions with a scalar field also show that the model is compatible with a phantom field only. A comparison with the observational outcomes indicates that the universe has entered into the present accelerating phase in recent past somewhere between \(0.2\lesssim z\lesssim 0.5\). The model obeys the “cosmic no hair conjecture”. The models with \(0<\alpha <1\) describe late time acceleration driven by quintessence dark energy. A violation of the NEC and WEC is The models with \(1< a < 3\) describe decelerating phases which are usually occur in the presence of dust or radiation. The models with \(\alpha >3\) violate the DEC and the corresponding scalar field models have negative potential which is physically unrealistic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. \(\rho +p\ge 0\).

  2. \(\rho +3p\ge 0\).

  3. The behavior of the Bianchi IX model is similar, provided that the cosmological constant must be large compared to the spatial curvature.

  4. \(\rho \ge 0\), \(\rho +p\ge 0\).

  5. The conjecture states that a large class of ever-expanding cosmological models with a positive cosmological constant rapidly approach asymptotically a de Sitter state at late times.

  6. If it is possible to enter into the inflationary phase well before the model recollapses, then all arguments still hold true for Bianchi IX also. However, this requires a comparison of two time scales that are strongly dependent on initial conditions.

  7. \(\rho \ge |p|\), i.e., \(\rho \pm p\ge 0\).

  8. Quantum theory and phantom scalar fields allow a negative potential in some contexts (see for example [87] and references therein).

References

  1. Guth, A.H.: Phys. Rev. D 23, 347 (1981)

    ADS  Google Scholar 

  2. Linde, A.D.: Phys. Lett. B 108, 389 (1982)

    ADS  Google Scholar 

  3. Albrechts, A., Steinhardt, P.J.: Phys. Rev. Lett. 48, 1220 (1982)

    ADS  Google Scholar 

  4. Riess, A.G., et al.: Astron. J. 116, 1009–1038 (1998). arXiv:astro-ph/9805201

    ADS  Google Scholar 

  5. Perlmutter, S., et al.: Astrophys. J. 517, 565–586 (1999). arXiv:astro-ph/9812133

    ADS  Google Scholar 

  6. Schmidt, B.P., et al.: Astrophys. J. 507, 46 (1998). arXiv:astro-ph/9805200

    ADS  Google Scholar 

  7. Bahcall, N., Ostriker, J.P., Perlmutter, S., Steinhardt, P.J.: Science 284, 1481 (1999). arXiv:astro-ph/9906463

    ADS  Google Scholar 

  8. Jaffe, A.H., et al.: Phys. Rev. Lett. 86, 3475 (2001)

    ADS  Google Scholar 

  9. Sahni, V., Starobinsky, A.A.: Int. J. Mod. Phys. D 9, 373–444 (2000). arXiv:astro-ph/9904398

    ADS  Google Scholar 

  10. Padmanabhan, T.: Phys. Rep. 380, 235–320 (2003). arXiv:hep-th/0212290

    ADS  MathSciNet  Google Scholar 

  11. Peebles, P.J.E., Ratra, B.: Rev. Mod. Phys. 75, 559–606 (2003). arXiv:astro-ph/0207347

    ADS  Google Scholar 

  12. Carroll, S.M.: Living Rev. Relativ. 4, 1 (2001). arXiv:astro-ph/0004075

    ADS  MathSciNet  Google Scholar 

  13. Ade, P.A.R., et al.: Astron. Astrophys. 594, A13 (2016). arXiv:1502.01589 [astro-ph]

    Google Scholar 

  14. Komatsu, E., et al.: Astrophys. J. Suppl. 192, 18 (2011). arXiv:1001.4538 [astro-ph]

    ADS  Google Scholar 

  15. Bean, R., Hansen, S.H., Melchiorri, A.: Phys. Rev. D 64, 103508 (2001). arXiv:astro-ph/0104162

    ADS  Google Scholar 

  16. Hannestad, S., Morstell, E.: Phys. Rev. D 66, 063508 (2002)

    ADS  Google Scholar 

  17. Melchiorri, A., Mersini, L., Odman, C.J., Trodden, M.: Phys. Rev. D 68, 043509 (2003). arXiv:astro-ph/0211522

    ADS  Google Scholar 

  18. Chiba, T.: Phys. Rev. D 60, 083508 (1999). arXiv:gr-qc/9903094

    ADS  Google Scholar 

  19. Amendola, L.: Phys. Rev. D 62, 043511 (2000). arXiv:astro-ph/9908023

    ADS  Google Scholar 

  20. Martin, J.: Mod. Phys. Lett. A 23, 1252–1265 (2008). arXiv:0803.4076 [astro-ph]

    ADS  Google Scholar 

  21. Caldwell, R.R.: Phys. Lett. B 545, 23 (2002). arXiv:astro-ph/9908168

    ADS  Google Scholar 

  22. Caldwell, R.R., Kamionkowski, M., Weinberg, N.N.: Phys. Rev. Lett. 91, 071301 (2003). arXiv:astro-ph/0302506

    ADS  Google Scholar 

  23. Tonry, J.L., et al.: Astrophys. J. 594, 1 (2003). arXiv:astro-ph/0305008

    ADS  Google Scholar 

  24. Alam, U., Sahni, V., Saini, T.D., Starobinsky, A.A.: Mon. Not. R. Astron. Soc. 354, 275 (2004). arXiv:astro-ph/0311364

    ADS  Google Scholar 

  25. Choudhury, T.R., Padmanabhan, T.: Astron. Astrophys. 429, 807 (2005). arXiv:astro-ph/0311622

    ADS  Google Scholar 

  26. Knop, R.A., et al.: Astrophys. J. 598, 102 (2003). arXiv:astro-ph/0309368

    ADS  Google Scholar 

  27. Alcaniz, J.S.: Phys. Rev. D 69, 083521 (2004). arXiv:astro-ph/0312424

    ADS  Google Scholar 

  28. Berman, M.S.: Nuovo Cimento 74, 182 (1983)

    Google Scholar 

  29. Johri, V.B., Desikan, K.: Gen. Relativ. Gravit. 12, 1217 (1994)

    ADS  Google Scholar 

  30. Berman, M.S., de Gomide, F.M.: Gen. Relativ. Gravit. 20, 191 (1988)

    ADS  Google Scholar 

  31. Singh, T., Singh, G.P.: Nuovo Cimento 106, 617 (1991)

    Google Scholar 

  32. Berman, M.S.: Phys. Rev. D 43, 1075 (1991)

    ADS  Google Scholar 

  33. Berman, M.S.: Gen. Relativ. Gravit. 23, 465 (1991)

    ADS  Google Scholar 

  34. Beesham, A.: Gen. Relativ. Gravit. 25, 561 (1992)

    ADS  Google Scholar 

  35. Beesham, A.: Phys. Rev. D 48, 3539 (1993)

    ADS  Google Scholar 

  36. Berman, M.S., Som, M.M.: Int. J. Theor. Phys. 29, 1411 (1990)

    Google Scholar 

  37. Maharaj, S.D., Naidoo, R.: Astrophys. Scace Sci. 208, 261 (1993)

    ADS  Google Scholar 

  38. Johri, V.B., Desikan, K.: Pramana J. Phys. 42, 473 (1994)

    ADS  Google Scholar 

  39. Johri, V.B., Desikan, K.: Astro Lett. Commun. 33, 287 (1996)

  40. Singh, G.P., Desikan, K.: Pramana J. Phys. 49, 205 (1997)

    ADS  Google Scholar 

  41. Pradhan, A., Yadav, V.K., Chakrabarty, I.: Int. J. Mod. Phys. D 10, 339 (2001)

    ADS  Google Scholar 

  42. Singh, V., Singh, C.P.: Astrophys. Scace Sci. 346, 285 (2013)

    ADS  Google Scholar 

  43. Pradhan, A., Vishwakarma, A.K.: Indian J. Pure App. Math. 33, 1239 (2002)

    Google Scholar 

  44. Pradhan, A., Vishwakarma, A.K.: J. Geom. Phys. 49, 332 (2004)

    ADS  MathSciNet  Google Scholar 

  45. Pradhan, A., Yadav, V.K.: Int. J. Mod. Phys. D 11, 893 (2002)

    ADS  Google Scholar 

  46. Rahaman, F., Begum, N., Bag, G., Bhui, B.C.: Astrophys. Scace Sci. 299, 211 (2005)

    ADS  Google Scholar 

  47. Singh, C.P., Kumar, S.: Int. J. Mod. Phys. D 15, 419 (2006)

    ADS  Google Scholar 

  48. Singh, C.P., Kumar, S.: Pramana J. Phys. 68, 707 (2007)

    ADS  Google Scholar 

  49. Reddy, D.R.K., Rao, M.V.S., Rao, G.K.: Astrophys. Scace Sci. 306, 171 (2006)

    ADS  Google Scholar 

  50. Reddy, D.R.K., Naidu, R.L., Adhav, K.S.: Astrophys. Scace Sci. 307, 365 (2007)

    ADS  Google Scholar 

  51. Kumar, S., Singh, C.P.: Astrophys. Scace Sci. 312, 57 (2007)

    ADS  Google Scholar 

  52. Nojiri, S., Odintsov, S.D.: Gen. Relativ. Grav. 38, 1285 (2006). arXiv:hep-th/0506212

    ADS  Google Scholar 

  53. Piao, Y.S., Zhang, Y.Z.: Phys. Rev. D 70, 063513 (2004). arXiv:astro-ph/0401231

    ADS  Google Scholar 

  54. Piao, Y.S., Zhou, E.: Phys. Rev. D 68, 083515 (2003). arXiv:hep-th/0308080

    ADS  Google Scholar 

  55. Gonzalez-Diaz, P., Jimenez-Madrid, J.: Phys. Lett. B 596, 16 (2004). arXiv:hep-th/0406261

    ADS  Google Scholar 

  56. Anisimov, A., Babichev, E., Vikman, A.: J. Cosmol. Astropart. Phys. 06, 006 (2005). arXiv:astroph/0504560

    ADS  Google Scholar 

  57. Baldi, M., Finelli, F., Matarrese, S.: Phys. Rev. D 72, 083504 (2005). arXiv:astro-ph/0505552

    ADS  Google Scholar 

  58. Abbott, L.F., Wise, M.B.: Nucl. Phys. B 244, 541 (1984)

    ADS  Google Scholar 

  59. Barrow, J.D., Turner, M.S.: Nature 292, 35 (1981)

    ADS  Google Scholar 

  60. Demianski, M.: Nature 307, 140 (1984)

    ADS  Google Scholar 

  61. Steigman, G., Turner, M.S.: Phys. Lett. B 128, 295 (1983)

    ADS  Google Scholar 

  62. Wald, R.M.: Phys. Rev. D 28, 2118 (1983)

    ADS  MathSciNet  Google Scholar 

  63. Rothman, T., Madsen, M.S.: Phys. Lett. B 159, 256 (1985)

    ADS  Google Scholar 

  64. Epstein, H., Glaser, V., Jaffe, A.: Nuovo Cimento 36, 1016 (1965)

    Google Scholar 

  65. Lamoreaux, S.K.: Phys. Rev. Lett. 78, 5 (1997)

    ADS  Google Scholar 

  66. Mohideen, U., Roy, A.: Phys. Rev. Lett. 81, 4549 (1998)

    ADS  Google Scholar 

  67. Wu, L.A., Kimble, H.J., Hall, J.L., Wu, H.: Phys. Rev. Lett. 57, 2520 (1986)

    ADS  Google Scholar 

  68. Nojiri, S., Odintsov, S.D.: Gen. Relativ. Gravit. 38, 1285–1304 (2006). arXiv:hep-th/0506212

    ADS  Google Scholar 

  69. Capozziello, S., Nojiri, S., Odintsov, S.D.: Phys. Lett. B 632, 597–604 (2006). arXiv:hep-th/0507182

    ADS  Google Scholar 

  70. Gibbons, G., Hawking, S.: Phys. Rev. D 15, 2738 (1977)

    ADS  MathSciNet  Google Scholar 

  71. Hawking, S., Moss, I.: Phys. Lett. B 110, 35 (1982)

    ADS  Google Scholar 

  72. Gonzalez, M., Jones, B.J.T.: Phys. Lett. B 167, 37 (1986)

    ADS  Google Scholar 

  73. Turner, M.S., Widrow, L.M.: Phys. Rev. Lett. 57, 2237 (1986)

    ADS  Google Scholar 

  74. Moss, I., Sahni, V.: Phys. Lett. B 178, 159 (1986)

    ADS  Google Scholar 

  75. Jensen, L.G., Stein-Schables, J.A.: Phys. Rev. D 34, 931 (1986)

    ADS  MathSciNet  Google Scholar 

  76. Barrow, J.D.: Phys. Lett. B 187, 12 (1987)

    ADS  Google Scholar 

  77. Linde, A.D.: Rep. Prog. Phys. 42, 382 (1985)

    Google Scholar 

  78. Barrow, J.D., Ottewil, A.: J. Phys. A Math. Gen. 16, 2757 (1983)

    ADS  Google Scholar 

  79. Hawking, S.W., Luttrell, J.C.: Nucl. Phys. B 247, 250 (1984)

    ADS  Google Scholar 

  80. White, B.: Phys. Lett. B 145, 176 (1984)

    ADS  MathSciNet  Google Scholar 

  81. Mijic, M.B., Morris, M.B., Suen, W.W.: Phys. Rev. D 34, 2934 (1986)

    ADS  Google Scholar 

  82. Pollock, M.D.: Phys. Lett. B 215, 635 (1988)

    ADS  Google Scholar 

  83. Barrow, J.D.: Nucl. Phys. B 310, 743 (1988)

    ADS  Google Scholar 

  84. Torres, D.F.: Phys. Rev. D 66, 043522 (2002). arXiv:astro-ph/0204504

    ADS  Google Scholar 

  85. Nojiri, S., Odintsov, S.D.: Phys. Lett. B 562, 147 (2003). arXiv:hep-th/0303117

    ADS  Google Scholar 

  86. Nojiri, S., Odintsov, S.D.: Phys. Lett. B 571, 1 (2003). arXiv:hep-th/0306212

    ADS  Google Scholar 

  87. Graham, N., Olum, K.D.: Phys. Rev. D 67, 085014 (2003). arXiv:hep-th/0211244

    ADS  MathSciNet  Google Scholar 

  88. Jacobs, K.C.: Astrophys. J. 153, 661 (1968)

    ADS  Google Scholar 

  89. Collins, C.B.: Commun. Math. Phys. 23, 137 (1971)

    ADS  Google Scholar 

  90. Ellis, G.F.R., MacCallum, M.A.H.: Commun. Math. Phys. 12, 108 (1969)

    ADS  Google Scholar 

  91. Collins, C.B.: Phys. Lett. A 60, 397 (1977)

    ADS  MathSciNet  Google Scholar 

  92. Linder, E.V.: Phys. Rev. Lett. 90, 091301 (2003). arXiv:astro-ph/0208512

    ADS  Google Scholar 

  93. Ray, S., Mukhopadhyay, U., Duttachowdhury, S.B.: Int. J. Mod. Phys. D 16, 1791 (2007)

    ADS  Google Scholar 

  94. Mukhopadhyay, U., Ray, S., Duttachowdhury, S.B.: Int. J. Mod. Phys. D 17, 301 (2008)

    ADS  Google Scholar 

  95. Linder, E.V.: Gen. Relativ. Gravit. 40, 329–356 (2008). arXiv:0704.2064 [astro-ph]

    ADS  Google Scholar 

  96. Ray, S., Rahaman, F., Mukhopadhyay, U., Sarkar, R.: Int. J. Theor. Phys. 50, 2687–2696 (2011). arXiv:1003.5895 [gen-ph]

    Google Scholar 

  97. Knop, R.A., et al.: Astrophys. J. 598, 102 (2003). arXiv:astro-ph/0309368

    ADS  Google Scholar 

  98. Tegmark, M., et al.: Astrophys. J. 606, 702 (2004). arXiv:astro-ph/0310725

    ADS  Google Scholar 

  99. Huterer, D., Turner, M.S.: Phys. Rev. D 64, 123527 (2001). arXiv:astro-ph/0012510

    ADS  Google Scholar 

  100. Huterer, D., Cooray, A.: Phys. Rev. D 71, 023506 (2005). arXiv:astro-ph/0404062

    ADS  Google Scholar 

  101. Gron, O.: Phys. Rev. D 32, 2522 (1985)

    ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vijay Singh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, V., Beesham, A. LRS Bianchi I model with constant deceleration parameter. Gen Relativ Gravit 51, 166 (2019). https://doi.org/10.1007/s10714-019-2650-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-019-2650-y

Keywords

Navigation