Skip to main content
Log in

Symbolic and numerical analysis in general relativity with open source computer algebra systems

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We study three computer algebra systems, namely SageMath (with SageManifolds package), Maxima (with ctensor package) and Python language (with GraviPy module), which allow tensor manipulation for general relativity calculations along with general algebraic calculations. We present a benchmark of these systems using simple examples. After the general analysis, we focus on the SageMath and SageManifolds system to derive, analyze and visualize the solutions of the massless Klein–Gordon equation and geodesic motion with Hamilton–Jacobi formalism. We compare our numerical result of the Klein–Gordon equation with the asymptotic form of the analytical solution to see that they agree.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Heinicke, C., Hehl, F.W.: Computer algebra in gravity. In: Grabmeier, J., Kaltofen, E., Weispfennig V. (eds.) Computer Algebra Handbook. Springer, Berlin (2003). arXiv: gr-qc/0105094

  2. Korolkova, A.V., Kulyabov, D.S., Sevastyanov, L.A.: Tensor computations in computer algebra systems. Program. Comput. Softw. 39(3), 135–142, (2013). arXiv:1402.6635 [cs.SC]

  3. MacCallum, M.A.H.: Computer algebra in gravity research. Living Rev. Relat. 21, (1), 6 (2018)

    Article  ADS  Google Scholar 

  4. Cohen, I., Frick, I., Åman, J.E.: Algebraic computing in general relativity. Fundam. Theor. Phys. 9, 139 (1984)

    MathSciNet  Google Scholar 

  5. Birkandan, T.: A Newman–Penrose calculator for instanton metrics. Int. J. Mod. Phys. C 19, 1277 (2008). arXiv:0711.0613 [gr-qc]

  6. SageMath, the Sage Mathematics Software System (Version 8.3), The Sage Developers (2018) http://www.sagemath.org. Accessed 3 Oct 2018

  7. Maxima, a Computer Algebra System (Version 18.02.0) (2018) http://maxima.sourceforge.net/. Accessed 3 Oct 2018

  8. Python Software Foundation, Python Language Reference, version 2.7 (2017) http://www.python.org. Accessed 3 Oct 2018

  9. Peeters, K.: Introducing Cadabra: A Symbolic computer algebra system for field theory problems. arXiv:hep-th/0701238 [HEP-TH]

  10. Poslavsky, S., Bolotin, D.: Redberry: a computer algebra system designed for tensor manipulation. J. Phys. Conf. Ser. 608(1), 012060 (2015)

    Article  Google Scholar 

  11. Vincent, F.H., Paumard, T., Gourgoulhon, E., Perrin, G.: GYOTO: a new general relativistic ray-tracing code. Class. Quant. Grav. 28, 225011 (2011). arXiv:1109.4769 [gr-qc]. http://gyoto.obspm.fr/index.html. Accessed 3 Oct 2018

  12. Gourgoulhon, E., Bejger, M., Mancini, M.: Tensor calculus with open-source software: the SageManifolds project. J. Phys. Conf. Ser. 600(1), 012002 (2015). arXiv:1412.4765 [gr-qc]. http://sagemanifolds.obspm.fr/. Accessed 3 Oct 2018

  13. Toth, V.: Tensor manipulation in GPL Maxima. arXiv:cs/0503073v2 [cs.SC]

  14. GraviPy, Tensor Calculus Package for General Relativity (Version 0.1.0) (2014) https://pypi.python.org/pypi/GraviPy. Accessed 3 Oct 2018

  15. Gourgoulhon E., Mancini, M.: Symbolic tensor calculus on manifolds: a SageMath implementation. In: Lectures at JNCF 2018, CIRM, Marseille (France), arXiv:1804.07346 [gr-qc]

  16. Birkandan, T., Cvetič, M.: Conformal invariance and near-extreme rotating AdS black holes. Phys. Rev. D 84, 044018 (2011). arXiv:1106.4329 [hep-th]

  17. Chandrasekhar, S.: The Mathematical Theory of Black Holes. Oxford University Press, New York (1992)

    MATH  Google Scholar 

  18. https://github.com/tbirkandan/opensourceGR. Accessed 16 Nov 2018

  19. Birrell, N.D., Davies, P.C.: Quantum Fields in Curved Space. Cambridge University Press, Cambridge (1986)

    MATH  Google Scholar 

  20. Vieira, H.S., Bezerra, V.B.: Confluent Heun functions and the physics of black holes: resonant frequencies, Hawking radiation and scattering of scalar waves. Ann. Phys. 373, 28 (2016). arXiv:1603.02233 [gr-qc]

  21. Ronveaux, A. (ed.): Heun’s Differential Equation. Oxford University Press, Oxford (1995)

    MATH  Google Scholar 

  22. Slavyanov, S.Y., Lay, W.: Special Functions: A Unified Theory Based on Singularities. Oxford University Press, Oxford (2000)

    MATH  Google Scholar 

  23. Hortaçsu, M.: Heun functions and some of their applications in physics. Adv. High Energy Phys. 2018, 8621573 (2018). arXiv:1101.0471 [math-ph]

  24. Birkandan, T., Hortaçsu, M.: Examples of Heun and Mathieu functions as solutions of wave equations in curved spaces. J. Phys. A 40, 1105 (2007) [J. Phys. A 40, 11203 (2007)]. arXiv:gr-qc/0607108

  25. Birkandan, T., Hortaçsu, M.: Quantum field theory applications of Heun type functions. Rep. Math. Phys. 79, 81 (2017). arXiv:1605.07848 [hep-th]

  26. Fiziev, P., Staicova, D.: Application of the confluent Heun functions for finding the quasinormal modes of nonrotating black holes. Phys. Rev. D 84, 127502 (2011). arXiv:1109.1532 [gr-qc]

  27. Motygin, O.V.: On Numerical Evaluation of the Heun Functions. Proceedings on Days on Diffraction. p. 222 (2015). arXiv:1506.03848 [math.NA]. https://github.com/motygin/Heun_functions/. Accessed 3 Oct 2018

  28. Motygin, O.V.: On Evaluation of the Confluent Heun Functions. arXiv:1804.01007 [math.NA]. https://github.com/motygin/confluent_Heun_functions. Accessed 3 Oct 2018

Download references

Acknowledgements

We would like to thank Profs. Neşe Özdemir, Durmuş Ali Demir and Éric Gourgoulhon for stimulating discussions. We also thank our anonymous referee for the constructive comments which helped us to improve the manuscript. This work is partially supported by TÜBİTAK, the Scientific and Technological Council of Turkey.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tolga Birkandan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Birkandan, T., Güzelgün, C., Şirin, E. et al. Symbolic and numerical analysis in general relativity with open source computer algebra systems. Gen Relativ Gravit 51, 4 (2019). https://doi.org/10.1007/s10714-018-2486-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-018-2486-x

Keywords

Navigation