Skip to main content

Advertisement

Log in

Are there any models with homogeneous energy density?

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

By applying a recent method—based on a tetrad formalism in General Relativity and the orthogonal splitting of the Riemann tensor—to the simple spherical static case, we found that the only static solution with homogeneous energy density is the Schwarzschild solution and that there are no spherically symmetric dynamic solutions consistent with the homogeneous energy density assumption. Finally, a circular equivalence is shown among the most frequent conditions considered in the spherical symmetric case: homogeneous density, isotropy in pressures, conformally flatness and shear-free conditions. We demonstrate that, due to the regularity conditions at the center of the matter distribution, the imposition of two conditions necessarily leads to the static case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Weinberg, S.: Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity. Wiley, New York (1972)

    Google Scholar 

  2. Shapiro, S.L., Teukolsky, S.A.: The Physics of Compact Objects. Wiley, New York (1983)

    Google Scholar 

  3. Schutz, B.F.: A First Course in General Relativity. Cambridge University Press, Cambridge (2009)

    Book  MATH  Google Scholar 

  4. Misner, C.W., Thorne, K.S., Wheeler, J.A.: Gravitation. Princeton University Press, Princeton (2017)

    MATH  Google Scholar 

  5. Wyman, M.: Radially symmetric distributions of matter. Phys. Rev. 75(12), 1930–1936 (1949)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Bonnor, W.B., Faulkes, M.C.: Exact solutions for oscillating spheres in general relativity. Mon. Not. R. Astron. Soc. 137, 239 (1967)

    Article  ADS  Google Scholar 

  7. Misra, R.M., Srivastava, D.C.: Dynamics of fluid spheres of uniform density. Phys. Rev. D 8(6), 1653 (1973)

    Article  ADS  Google Scholar 

  8. Bowers, R.L., Liang, E.P.T.: Anisotropic spheres in general relativity. Astrophys. J. 188, 657 (1974)

    Article  ADS  Google Scholar 

  9. Ponce de Leon, J.: Fluid spheres of uniform density in general relativity. J. Math. Phys. 27(1), 271–276 (1986)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Herrera, L., Núñez, L.A.: Propagation of a shock wave in a radiating spherically symmetric distribution of matter. Astrophys. J. 319, 868–884 (1987)

    Article  ADS  Google Scholar 

  11. Maharaj, S.D., Maartens, R.: Anisotropic spheres with uniform energy density in general relativity. Gen. Relativ. Gravit. 21(9), 899–905 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  12. Herrera, L., Núñez, L.A.: Modeling “hydrodynamic phase transitions” in a radiating spherically symmetric distribution of matter. Astrophys. J. 339, 339–353 (1989)

    Article  ADS  Google Scholar 

  13. Rueda, J.A., Núñez, L.A.: General relativistic radiant shock waves in the post-quasistatic approximation. In Apostolopoulos, P., Bona, C., Carot, J., Mas, Ll., Sintes, A.M., Stela, J. (eds.) Einstein’s Legacy: From the Theoretical Paradise to Astrophysical Observations, volume 66 of Journal of Physics: Conference Series, p. 012042, London UK, 2007. XXIXth Spanish Relativity Meeting (ERE 2006), Institute of Physics Publishing (2007)

  14. Ospino, J., Hernández-Pastora, J. L., Núñez, L. A.: An equivalent system of Einstein equations. In Journal of Physics Conference Series, volume 831 of Journal of Physics, Conference Series, p. 012011, March (2017)

  15. Ellis, G.F.R.: Relativistic cosmology. In: Sachs, R.K. (ed.) General Relativity and Cosmology, pp. 104–182. Academic Press, New York (1971)

    Google Scholar 

  16. Ellis, G.F.R., Bruni, M.: Covariant and gauge-invariant approach to cosmological density fluctuations. Phys. Rev. D 40, 1804–1818 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  17. Ehlers, J.: Contributions to the relativistic mechanics of continuous media. Gen. Relativ. Gravit. 25, 1225–1266 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Wainwright, J., Ellis, G.F.R.: Dynamical Systems in Cosmology. Cambridge University Press, Cambridge (2005)

    MATH  Google Scholar 

  19. Ellis, G.F.R., van Elst, H.: Cosmological models (Cargèse lectures 1998). In: Lachièze-Rey, M. (ed.) NATO Advanced Science Institutes (ASI) Series C, volume 541 of Series C, pp. 1–116 (1999)

  20. Tsagas, C.G., Challinor, A., Maartens, R.: Relativistic cosmology and large-scale structure. Phys. Rep. 465, 61–147 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  21. Ellis, G.F.R., Maartens, R., MacCallum, M.A.H.: Relativistic Cosmology. Cambridge University Press, Cambridge (2012)

    Book  MATH  Google Scholar 

  22. Stewart, B.W.: Flat anisotropic spheres in general relativity. J. Phys. A Math. Gen. 15(8), 2419 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  23. Wainwright, J.: Power law singularities in orthogonal spatially homogeneous cosmologies. Gen. Relativ. Gravit. 16(7), 657 (1984)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Goode, S.W., Wainwright, J.: Isotropic singularities in cosmological models. Class. Quantum Gravity 2(1), 99 (1985)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Bonnor, W.B.: The gravitational arrow of time. Phys. Lett. A 112, 26 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  26. Bonnor, W.B.: Arrow of time for a collapsing radiating sphere. Phys. Lett. A 122, 305 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  27. Ponce de Leon, J.: Gravitational repulsion in sources of the Reissner–Nordstrom field. J. Math. Phys. 29(1), 197 (1988)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Goode, S.W., Coley, A.A., Wainwright, J.: The isotropic singularity in cosmology. Class. Quantum Gravity 9(2), 445 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Herreran, L., Di Prisco, A., Ospino, J., Fuenmayor, E.: Conformally flat anisotropic spheres in general relativity. J. Math. Phys. 42, 2129 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Herrera, L.: The Weyl tensor and equilibrium configurations of selfgravitating fluids. Gen. Relativ. Gravit. 35, 437 (2003)

    Article  ADS  MATH  Google Scholar 

  31. Herrera, L., Di Prisco, A., Ospino, J., Fuenmayor, E.: Spherically symmetric dissipative anisotropic fluids: a general study. Phys. Rev. D 69, 084026 (2004)

    Article  ADS  Google Scholar 

  32. Grøn, Ø., Johannesen, S.: Conformally flat spherically symmetric spacetimes. Eur. Phys. J. Plus 128, 92 (2013)

    Article  Google Scholar 

  33. Manjonjo, A.M., Maharaj, S.D., Moopanar, S.: Conformally vectors and stellar models. Eur. Phys. J. Plus 132, 62 (2017)

    Article  Google Scholar 

  34. Manjonjo, A.M., Maharaj, S.D., Moopanar, S.: Static models with conformal symmetry. Class. Quantum Gravity 35(4), 045015 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Ivanov, B.V.: Conformally flat realistic anisotropic model for a comppact star. Eur. Phys. J. C 78, 332 (2018)

    Article  ADS  Google Scholar 

  36. Collins, C.B., Wainwright, J.: Role of the shear in general-relativistic cosmological and stellar models. Phys. Rev. D 27, 1209 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  37. Glass, E.N.: Shearfree gravitational collapse. J. Math. Phys. 20, 1508 (1979)

    Article  ADS  Google Scholar 

  38. Stephani, H., Wolf, T.: Spherically symmetric perfect fluids in shear-free motion—the symmetry approach. Class. Quantum Gravity 13, 1261 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Govinder, K.S., Govender, M., Maartens, R.: On radiating stellar collapse with shear. Mon. Not. R. Astron. Soc. 299(3), 809 (1998)

    Article  ADS  Google Scholar 

  40. Joshi, P.S., Dadhich, N., Maartens, R.: Why do naked singularities form in gravitational collapse ? Phys. Rev. D 65, 101501 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  41. Joshi, P.S., Goswami, R., Dadhich, N.: The critical role of shear in gravitational collapse. gr-qc/0308012

  42. Herrera, L., Le Denmat, G., Santos, N.O., Wang, A.: Shear-free radiating collapse and conformal flatness. Int. J. Modern Phys. D 13(04), 583–592 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Herrera, L., Santos, N.O., Wang, A.: Shearing expansion-free spherical anisotropic fluid evolution. Phys. Rev. D 78, 084026 (2008)

    Article  ADS  Google Scholar 

  44. Herrera, L., Di Prisco, A., Ospino, J.: Shear-free axially symmetric dissipative fluids. Phys. Rev. D 89(12), 127502 (2014)

    Article  ADS  Google Scholar 

  45. Wald, R.M.: General Relativity. University of Chicago Press, Chicago (2010)

    MATH  Google Scholar 

  46. Gómez-Lobo, A.García-Parrado: Dynamical laws of superenergy in general relativity. Class. Quantum Gravity 25(1), 015006 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  47. Herrera, L., Ospino, J., Di Prisco, A., Fuenmayor, E., Troconis, O.: Structure and evolution of self-gravitating objects and the orthogonal splitting of the Riemann tensor. Phys. Rev. D 79(6), 064025 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  48. Herrera, L., Di Prisco, A., Ibáñez, J., Ospino, J.: Dissipative collapse of axially symmetric, general relativistic sources: a general framework and some applications. Phys. Rev. D 89(8), 084034 (2014)

    Article  ADS  Google Scholar 

  49. Herrera, L., Ospino, J., Di Prisco, A.: All static spherically symmetric anisotropic solutions of Einstein’s equations. Phys. Rev. D D77, 027502 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  50. Herrera, L., Santos, N.O.: Local anisotropy in self-gravitating systems. Phys. Rep. 286(2), 53–130 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  51. Misner, C.W., Sharp, D.H.: Relativistic equations for adiabatic, spherically symmetric gravitational collapse. Phys. Rev. 136, 571–576 (1964)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. Lindblom, L.: Static uniform-density stars must be spherical in general relativity. J. Math. Phys. 29(2), 436–439 (1988)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  53. Lindblom, L., Masood-ul Alam, A.K.M.: On the spherical symmetry of static stellar models. Commun. Math. Phys. 162(1), 123–145 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  54. Masood-ul Alam, A.K.M.: Proof that static stellar models are spherical. Gen. Relativ. Gravit. 39(1), 55–85 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  55. Pfister, H.: A new and quite general existence proof for static and spherically symmetric perfect fluid stars in general relativity. Class. Quantum Gravity 28(7), 075006 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  56. Takisa, P.M., Maharaj, S.D.: Anisotropic charged core envelope star. Astrophys. Space Sci. 361(8), 262 (2016)

    Article  ADS  Google Scholar 

  57. Lake, K.: All static spherically symmetric perfect-fluid solutions of Einstein’s equations. Phys. Rev. D 67(10), 104015 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  58. Rahman, S., Visser, M.: Spacetime geometry of static fluid spheres. Class. Quantum Gravity 19(5), 935 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  59. Herrera, L., Di Prisco, A., Ospino, J.: On the stability of the shear-free condition. Gen. Relativ. Gravit. 42(7), 1585–1599 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  60. Herrera, L., Di Prisco, A., Ospino, J., Fuenmayor, E.: Conformally flat anisotropic spheres in general relativity. J. Math. Phys. 42, 2129–2143 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  61. Kileba Matondo, D., Maharaj, S.D., Ray, S.: Relativistic stars with conformal symmetry. Eur. Phys. J. C 78(6), 437 (2018)

    Article  ADS  Google Scholar 

  62. Maurya, S.K., Maharaj, S.D.: New anisotropic fluid spheres from embedding. Eur. Phys. J. A 54, 1–11 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

J.O. and J.L.H.-P. acknowledge financial support from Fondo Europeo de Desarrollo Regional (FEDER) (Grant FIS2015-65140-P) (MINECO/FEDER). J.O acknowledges hospitality of School of Physics of the Industrial University of Santander, Bucaramanga Colombia. L.A.N. gratefully acknowledge the financial support of the Vicerrectoría de Investigación y Extensión de la Universidad Industrial de Santander and the financial support provided by COLCIENCIAS under Grant No. 8863

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Ospino.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ospino, J., Hernández-Pastora, J.L., Hernández, H. et al. Are there any models with homogeneous energy density?. Gen Relativ Gravit 50, 146 (2018). https://doi.org/10.1007/s10714-018-2467-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-018-2467-0

Keywords

Navigation