Skip to main content
Log in

RIO: a new computational framework for accurate initial data of binary black holes

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We present a computational framework (Rio) in the ADM 3+1 approach for numerical relativity. This work enables us to carry out high resolution calculations for initial data of two arbitrary black holes. We use the transverse conformal treatment, the Bowen–York and the puncture methods. For the numerical solution of the Hamiltonian constraint we use the domain decomposition and the spectral decomposition of Galerkin–Collocation. The nonlinear numerical code solves the set of equations for the spectral modes using the standard Newton–Raphson method, LU decomposition and Gaussian quadratures. We show the convergence of the Rio code. This code allows for easy deployment of large calculations. We show how the spin of one of the black holes is manifest in the conformal factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Abbott, B.P., et al.: Phys. Rev. Lett. 116, 061102 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  2. Abbott, B.P., et al.: Phys. Rev. Lett. 116, 241103 (2016)

    Article  ADS  Google Scholar 

  3. Abbott, B.P., et al.: Phys. Rev. Lett. 118, 221101 (2017)

    Article  ADS  Google Scholar 

  4. Abbott, B.P., et al.: Phys. Rev. Lett. 119, 141101 (2017)

    Article  ADS  Google Scholar 

  5. Yang, H., Paschalidis, V., Yagi, K., Lehner, L., Pretorius, F., Yunes, N.: Phys. Rev. D 97, 024049 (2018)

    Article  ADS  Google Scholar 

  6. Abbot, B.P., et al.: Phys. Rev. Lett. 119, 161101 (2017)

    Article  ADS  Google Scholar 

  7. Abbot, B.P., et al.: Astrophys. J. Lett. 848, L12 (2017)

    Article  ADS  Google Scholar 

  8. Clark, M., Laguna, P.: Phys. Rev. D 94, 064058 (2016)

    Article  ADS  Google Scholar 

  9. Healy, J., Lousto, C. O., Zlochower, Y., Campanelli, M.: The RIT binary black hole simulations catalog, arXiv:1703.03423

  10. Maselli, A., Kokkotas, K., Laguna, P.: Phys. Rev. D 95, 104026 (2017)

    Article  ADS  Google Scholar 

  11. Thomas, J.W.: Numerical Partial Differential Equations: Finite Difference Methods. Springer, Berlin (1998)

    Google Scholar 

  12. Thomas, J.W.: Conservation Laws and Elliptic Equations. Springer, Berlin (1999)

    MATH  Google Scholar 

  13. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in FORTRAN. The Art of Scientific Computing. Cambridge University Press, Cambridge (1992)

    MATH  Google Scholar 

  14. Baumgarte, T.W., Shapiro, S.L.: Numerical Relativity: Solving EinsteinÕs Equations on the Computer. Cambridge University Press, Cambridge (2010)

    Book  MATH  Google Scholar 

  15. York, J.W.: Sources of gravitational radiation. In: Smarr, L.L. (ed.) Proceedings of the Workshop, Seattle, Wash, 1978. Cambridge University Press, Cambridge, England (1979)

  16. Cook, G.B.: Living Rev. Relat. 3, 5 (2000)

    Article  ADS  Google Scholar 

  17. Bowen, J.M., York Jr., J.W.: Phys. Rev. D 21, 2047 (1980)

    Article  ADS  Google Scholar 

  18. Barreto, W., Clemente, P. C. M., de Oliveira, H., Rodriguez-Mueller, B.: arXiv:1803.00850

  19. Boyd, J.P.: Chebyshev and Fourier Spectral Methods. Dover Publications, New York (2001)

    MATH  Google Scholar 

  20. Clemente, P.C.M., de Oliveira, H.: Phys. Rev. D 96, 024035 (2017)

    Article  ADS  Google Scholar 

  21. Finlayson, B.A.: The Method of Weighted Residuals and Variational Principles. Academic Press, New York (1972)

    MATH  Google Scholar 

  22. Brügmann, B.: Int. J. Mod. Phys. D 8, 85 (1999)

    Article  ADS  Google Scholar 

  23. Ansorg, M., Brügmann, B., Tichy, W.: Phys. Rev. D 70, 064011 (2004)

    Article  ADS  Google Scholar 

  24. Zilhão, M., Löffler, F.: arXiv:1305.5299

  25. Barreto, W., de Oliveira, H., Rodrigues, E.: arXiv:1803.00850

Download references

Acknowledgements

The authors acknowledge the financial support of the Brazilian agencies Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). H. P. O. thanks Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) for support within the Grant No. E-26/202.998/518 2016 Bolsas de Bancada de Projetos (BBP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Barreto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barreto, W., Clemente, P.C.M., de Oliveira, H.P. et al. RIO: a new computational framework for accurate initial data of binary black holes. Gen Relativ Gravit 50, 71 (2018). https://doi.org/10.1007/s10714-018-2393-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-018-2393-1

Keywords

Navigation