Skip to main content
Log in

Extreme gravity tests with gravitational waves from compact binary coalescences: (I) inspiral–merger

  • Editor’s Choice (Review Article)
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

The observation of the inspiral and merger of compact binaries by the LIGO/Virgo collaboration ushered in a new era in the study of strong-field gravity. We review current and future tests of strong gravity and of the Kerr paradigm with gravitational-wave interferometers, both within a theory-agnostic framework (the parametrized post-Einsteinian formalism) and in the context of specific modified theories of gravity (scalar–tensor, Einstein–dilaton–Gauss–Bonnet, dynamical Chern–Simons, Lorentz-violating, and extra dimensional theories). In this contribution we focus on (i) the information carried by the inspiral radiation, and (ii) recent progress in numerical simulations of compact binary mergers in modified gravity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Adapted from [36] (color figure online)

Fig. 2

From [260] (color figure online)

Fig. 3

From [260]

Fig. 4

From [260]

Similar content being viewed by others

Notes

  1. A straightforward generalization consists of coupling gravity with more than one scalar field. Then the action (1) has the more general form [12]

    $$\begin{aligned} S\,=\,\,&\frac{1}{16\pi }\int d^4x\sqrt{-g}\left( F(\phi )R-\gamma _{ab}(\phi )g^{\mu \nu }\partial _\mu \phi ^a \partial _\nu \phi ^b-V(\phi )\right) +S_M[\varPsi ,\,g_{\mu \nu }]\,, \end{aligned}$$

    where FV are functions of the N scalar fields \(\phi ^a\) (\(a=1\ldots N\)). The scalar fields live on a manifold (sometimes called the target space) with metric \(\gamma _{ab}(\phi )\). This action is invariant not only under space-time diffeomorphisms, but also under target-space diffeomorphisms, i.e. scalar field redefinitions. The geometry of the target space can affect the dynamics and the structure of compact objects [49].

  2. The terms \(\alpha _5\) and \(\alpha _6\) contain contributions that depend on \(\ln v\), which the authors treat as constant in [156]. In their follow-up papers [157, 158], they modified Eq. (18) by adding further terms of the form \(\sum _{k} \alpha _{n,l} \ln v\).

  3. By imposing the stringent constraints set by current astrophysical observations (cf. Table II of [194]), they find that dipolar radiation is subdominant to quadrupolar radiation for most prospective GW sources: in the absence of spontaneous scalarization, the dipole term can dominate only at frequencies \(f\lesssim 100~\mu \)Hz in binary neutron star or neutron-star/stellar-mass-black-hole systems, and at frequencies \(f \lesssim 5~\mu \)Hz in neutron-star/intermediate-mass-black-hole systems. Therefore, ground- and space-based GW detectors would only observe binary systems whose inspiral is driven by the next-to-leading order flux.

  4. The LVC derived bounds on the \(-1\)PN term with GW170814 [32].

  5. Since f(R) theories are equivalent to scalar–tensor gravity, they are also well-posed [266, 267].

  6. Some classes of Horndeski theory (for example, those that can be shown to be equivalent to Einstein–dilaton–Gauss–Bonnet gravity through integration by parts) are such that these no-hair theorem can be circumvented [59, 79, 91, 269], so that stationary black hole solutions can be different from GR.

  7. There are some proposal to circumvent these no-hair theorems involving time-dependent scalar fields [270,271,272]. Recent evidence shows that the resulting solutions are unstable [273], but the instability is astrophysically irrelevant in some regions of the parameter space [274].

References

  1. Sakharov, A.D.: Pisma. Zh. Eksp. Teor. Fiz. 5, 32 (1967). https://doi.org/10.1070/PU1991v034n05ABEH002497. [Usp. Fiz. Nauk 161, 61 (1991)]

    Article  Google Scholar 

  2. Alexander, S.H.S., Gates, J., James, S.: JCAP 0606, 018 (2006). arXiv:hep-th/0409014

    Article  ADS  Google Scholar 

  3. Alexander, S., Yunes, N.: Phys. Rep. 480, 1 (2009). https://doi.org/10.1016/j.physrep.2009.07.002. arXiv:0907.2562 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  4. Pilo, L.: PoS EPS-HEP2011, 076 (2011)

  5. Paulos, M.F., Tolley, A.J.: JHEP 09, 002 (2012). https://doi.org/10.1007/JHEP09(2012)002. arXiv:1203.4268 [hep-th]

    Article  ADS  Google Scholar 

  6. Will, C.M.: Living Rev. Relativ. 17, 4 (2014). https://doi.org/10.12942/lrr-2014-4. arXiv:1403.7377 [gr-qc]

    Article  ADS  Google Scholar 

  7. Stairs, I.H.: Living Rev. Relativ. 6, 5 (2003). https://doi.org/10.12942/lrr-2003-5. arXiv:astro-ph/0307536 [astro-ph]

    Article  ADS  Google Scholar 

  8. Brans, C., Dicke, R.H.: Phys. Rev. 124, 925 (1961). https://doi.org/10.1103/PhysRev.124.925

    Article  ADS  MathSciNet  Google Scholar 

  9. Fierz, M.: Helv. Phys. Acta 29, 128 (1956)

    MathSciNet  Google Scholar 

  10. Jordan, P.: Z. Phys. 157, 112 (1959). https://doi.org/10.1007/BF01375155

    Article  ADS  Google Scholar 

  11. Bertotti, B., Iess, L., Tortora, P.: Nature 425, 374 (2003). https://doi.org/10.1038/nature01997

    Article  ADS  Google Scholar 

  12. Damour, T., Esposito-Farese, G.: Class. Quantum Gravity 9, 2093 (1992). https://doi.org/10.1088/0264-9381/9/9/015

    Article  ADS  Google Scholar 

  13. Damour, T., Esposito-Farese, G.: Phys. Rev. Lett. 70, 2220 (1993). https://doi.org/10.1103/PhysRevLett.70.2220

    Article  ADS  Google Scholar 

  14. Damour, T., Esposito-Farese, G.: Phys. Rev. D 54, 1474 (1996). https://doi.org/10.1103/PhysRevD.54.1474. arXiv:gr-qc/9602056 [gr-qc]

    Article  ADS  Google Scholar 

  15. Damour, T., Nordtvedt, K.: Phys. Rev. Lett. 70, 2217 (1993). https://doi.org/10.1103/PhysRevLett.70.2217

    Article  ADS  Google Scholar 

  16. Damour, T., Nordtvedt, K.: Phys. Rev. D 48, 3436 (1993). https://doi.org/10.1103/PhysRevD.48.3436

    Article  ADS  MathSciNet  Google Scholar 

  17. Sampson, L., Yunes, N., Cornish, N., Ponce, M., Barausse, E., Klein, A., Palenzuela, C., Lehner, L.: Phys. Rev. D 90(12), 124091 (2014). https://doi.org/10.1103/PhysRevD.90.124091. arXiv:1407.7038 [gr-qc]

    Article  ADS  Google Scholar 

  18. Anderson, D., Yunes, N., Barausse, E.: Phys. Rev. D 94(10), 104064 (2016). https://doi.org/10.1103/PhysRevD.94.104064. arXiv:1607.08888 [gr-qc]

    Article  ADS  Google Scholar 

  19. Yunes, N., Pretorius, F.: Phys. Rev. D 79, 084043 (2009). https://doi.org/10.1103/PhysRevD.79.084043. arXiv:0902.4669 [gr-qc]

    Article  ADS  Google Scholar 

  20. Yunes, N., Stein, L.C.: Phys. Rev. D 83, 104002 (2011). https://doi.org/10.1103/PhysRevD.83.104002. arXiv:1101.2921 [gr-qc]

    Article  ADS  Google Scholar 

  21. Ali-Haimoud, Y.: Phys. Rev. D 83, 124050 (2011). arXiv:1105.0009 [astro-ph.HE]

    Article  ADS  Google Scholar 

  22. Ali-Haimoud, Y., Chen, Y.: Phys. Rev. D 84, 124033 (2011). https://doi.org/10.1103/PhysRevD.84.124033. arXiv:1110.5329 [astro-ph.HE]

    Article  ADS  Google Scholar 

  23. Yagi, K., Stein, L.C., Yunes, N., Tanaka, T.: Phys. Rev. D 85, 064022 (2012). https://doi.org/10.1103/PhysRevD.85.064022. arXiv:1110.5950 [gr-qc]

    Article  ADS  Google Scholar 

  24. Yagi, K., Stein, L.C., Yunes, N.: Phys. Rev. D 93(2), 024010 (2016). https://doi.org/10.1103/PhysRevD.93.024010. arXiv:1510.02152 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  25. Kocsis, B., Yunes, N., Loeb, A. (2011). arXiv:1104.2322 [astro-ph.GA]

  26. Yunes, N., Kocsis, B., Loeb, A., Haiman, Z: (2011). arXiv:1103.4609 [astro-ph.CO]

  27. Hayasaki, K., Yagi, K., Tanaka, T., Mineshige, S.: Phys. Rev. D 87(4), 044051 (2013). https://doi.org/10.1103/PhysRevD.87.044051. arXiv:1201.2858 [astro-ph.CO]

    Article  ADS  Google Scholar 

  28. Barausse, E., Cardoso, V., Pani, P.: Phys. Rev. D 89(10), 104059 (2014). https://doi.org/10.1103/PhysRevD.89.104059. arXiv:1404.7149 [gr-qc]

    Article  ADS  Google Scholar 

  29. Abbott, B.P., et al.: Phys. Rev. Lett. 116(6), 061102 (2016). https://doi.org/10.1103/PhysRevLett.116.061102. arXiv:1602.03837 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  30. Abbott, B.P., et al.: Phys. Rev. Lett. 116(24), 241103 (2016). https://doi.org/10.1103/PhysRevLett.116.241103. arXiv:1606.04855 [gr-qc]

    Article  ADS  Google Scholar 

  31. Abbott, B.P., et al.: Phys. Rev. Lett. 118(22), 221101 (2017). https://doi.org/10.1103/PhysRevLett.118.221101. arXiv:1706.01812 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  32. Abbott, B.P., et al.: Phys. Rev. Lett. 119(14), 141101 (2017). https://doi.org/10.1103/PhysRevLett.119.141101. arXiv:1709.09660 [gr-qc]

    Article  ADS  Google Scholar 

  33. Abbott, B.P., et al.: Phys. Rev. Lett. 119, 161101 (2017). https://doi.org/10.1103/PhysRevLett.119.161101. arXiv:1710.05832 [gr-qc]

    Article  ADS  Google Scholar 

  34. Abbott, B.P., et al.: (2017). arXiv:1711.05578 [astro-ph.HE]

  35. Audley, H., et al.: (2017). arXiv:1702.00786 [astro-ph.IM]

  36. Yunes, N., Yagi, K., Pretorius, F.: Phys. Rev. D 94(8), 084002 (2016). https://doi.org/10.1103/PhysRevD.94.084002. arXiv:1603.08955 [gr-qc]

    Article  ADS  Google Scholar 

  37. Polchinski, J.: String Theory. Vol. 1: An Introduction to the Bosonic String. Cambridge University Press, Cambridge (2007)

    MATH  Google Scholar 

  38. Duff, M.J.: in The Oskar Klein centenary. In: Proceedings, symposium, Stockholm, Sweden, September 19–21, 1994, pp. 22–35 (1994)

  39. Randall, L., Sundrum, R.: Phys. Rev. Lett. 83, 3370 (1999). https://doi.org/10.1103/PhysRevLett.83.3370. arXiv:hep-ph/9905221 [hep-ph]

    Article  ADS  MathSciNet  Google Scholar 

  40. Randall, L., Sundrum, R.: Phys. Rev. Lett. 83, 4690 (1999). https://doi.org/10.1103/PhysRevLett.83.4690. arXiv:hep-th/9906064 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  41. Clifton, T., Ferreira, P.G., Padilla, A., Skordis, C.: Phys. Rep. 513, 1 (2012). https://doi.org/10.1016/j.physrep.2012.01.001. arXiv:1106.2476 [astro-ph.CO]

    Article  ADS  MathSciNet  Google Scholar 

  42. Chiba, T., Harada, T., Nakao, K.I.: Prog. Theor. Phys. Suppl. 128, 335 (1997). https://doi.org/10.1143/PTPS.128.335

    Article  ADS  Google Scholar 

  43. Fujii, Y., Maeda, K.I.: The Scalar-Tensor Theory of Gravitation. Cambridge University Press (2007)

  44. Faraoni, V.: Cosmology in Scalar Tensor Gravity. Springer (2011)

  45. Sotiriou, T.P.: Lect. Notes Phys. 892, 3 (2015). https://doi.org/10.1007/978-3-319-10070-8_1. arXiv:1404.2955 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  46. Berti, E., et al.: Class. Quantum Gravity 32, 243001 (2015). https://doi.org/10.1088/0264-9381/32/24/243001. arXiv:1501.07274 [gr-qc]

    Article  ADS  Google Scholar 

  47. Bergmann, P.G.: Int. J. Theor. Phys. 1, 25 (1968). https://doi.org/10.1007/BF00668828

    Article  Google Scholar 

  48. Wagoner, R.V.: Phys. Rev. D 1, 3209 (1970). https://doi.org/10.1103/PhysRevD.1.3209

    Article  ADS  Google Scholar 

  49. Horbatsch, M., Silva, H.O., Gerosa, D., Pani, P., Berti, E., Gualtieri, L., Sperhake, U.: Class. Quantum Gravity 32(20), 204001 (2015). https://doi.org/10.1088/0264-9381/32/20/204001. arXiv:1505.07462 [gr-qc]

    Article  ADS  Google Scholar 

  50. Flanagan, E.E.: Class. Quantum Gravity 21, 3817 (2004). https://doi.org/10.1088/0264-9381/21/15/N02. arXiv:gr-qc/0403063 [gr-qc]

    Article  ADS  Google Scholar 

  51. Sotiriou, T.P., Faraoni, V., Liberati, S.: Int. J. Mod. Phys. D 17, 399 (2008). https://doi.org/10.1142/S0218271808012097. arXiv:0707.2748 [gr-qc]

    Article  ADS  Google Scholar 

  52. Alsing, J., Berti, E., Will, C.M., Zaglauer, H.: Phys. Rev. D 85, 064041 (2012). https://doi.org/10.1103/PhysRevD.85.064041. arXiv:1112.4903 [gr-qc]

    Article  ADS  Google Scholar 

  53. Damour, T., Esposito-Farese, G.: Phys. Rev. D 53, 5541 (1996). https://doi.org/10.1103/PhysRevD.53.5541. arXiv:gr-qc/9506063 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  54. Freire, P.C.C., Wex, N., Esposito-Farese, G., Verbiest, J.P.W., Bailes, M., Jacoby, B.A., Kramer, M., Stairs, I.H., Antoniadis, J., Janssen, G.H.: Mon. Not. R. Astron. Soc. 423, 3328 (2012). https://doi.org/10.1111/j.1365-2966.2012.21253.x. arXiv:1205.1450

    Article  ADS  Google Scholar 

  55. Shao, L., Sennett, N., Buonanno, A., Kramer, M., Wex, N.: Phys. Rev. X 7(4), 041025 (2017). https://doi.org/10.1103/PhysRevX.7.041025. arXiv:1704.07561 [gr-qc]

    Article  Google Scholar 

  56. Horndeski, G.W.: Int. J. Theor. Phys. 10, 363 (1974). https://doi.org/10.1007/BF01807638

    Article  Google Scholar 

  57. Deffayet, C., Gao, X., Steer, D.A., Zahariade, G.: Phys. Rev. D 84, 064039 (2011). https://doi.org/10.1103/PhysRevD.84.064039. arXiv:1103.3260 [hep-th]

    Article  ADS  Google Scholar 

  58. Kobayashi, T., Yamaguchi, M., Yokoyama, J.: Prog. Theor. Phys. 126, 511 (2011). https://doi.org/10.1143/PTP.126.511. arXiv:1105.5723 [hep-th]

    Article  ADS  Google Scholar 

  59. Maselli, A., Silva, H.O., Minamitsuji, M., Berti, E.: Phys. Rev. D 92(10), 104049 (2015). https://doi.org/10.1103/PhysRevD.92.104049. arXiv:1508.03044 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  60. Langlois, D., Noui, K.: JCAP 1607(07), 016 (2016). https://doi.org/10.1088/1475-7516/2016/07/016. arXiv:1512.06820 [gr-qc]

    Article  ADS  Google Scholar 

  61. Langlois, D.: In 52nd Rencontres de Moriond on Gravitation (Moriond Gravitation 2017) La Thuile, Italy, March 25–April 1, 2017, pp. 221–228. https://inspirehep.net/record/1609629/files/arXiv:1707.03625.pdf (2017)

  62. Heisenberg, L.: JCAP 1405, 015 (2014). https://doi.org/10.1088/1475-7516/2014/05/015. arXiv:1402.7026 [hep-th]

    Article  ADS  Google Scholar 

  63. Heisenberg, L., Kase, R., Tsujikawa, S.: Phys. Lett. B 760, 617 (2016). https://doi.org/10.1016/j.physletb.2016.07.052. arXiv:1605.05565 [hep-th]

    Article  ADS  Google Scholar 

  64. Maeda, Ki, Ohta, N., Sasagawa, Y.: Phys. Rev. D80, 104032 (2009). https://doi.org/10.1103/PhysRevD.80.104032. arXiv:0908.4151 [hep-th]

    Article  ADS  Google Scholar 

  65. Yagi, K.: Phys. Rev. D 86, 081504 (2012). https://doi.org/10.1103/PhysRevD.86.081504. arXiv:1204.4524 [gr-qc]

    Article  ADS  Google Scholar 

  66. Pani, P., Cardoso, V.: Phys. Rev. D 79, 084031 (2009). https://doi.org/10.1103/PhysRevD.79.084031. arXiv:0902.1569 [gr-qc]

    Article  ADS  Google Scholar 

  67. Pani, P., Berti, E., Cardoso, V., Read, J.: Phys. Rev. D 84, 104035 (2011). https://doi.org/10.1103/PhysRevD.84.104035. arXiv:1109.0928 [gr-qc]

    Article  ADS  Google Scholar 

  68. Kanti, P., Mavromatos, N., Rizos, J., Tamvakis, K., Winstanley, E.: Phys. Rev. D 54, 5049 (1996). https://doi.org/10.1103/PhysRevD.54.5049. arXiv:hep-th/9511071 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  69. Torii, T., Yajima, H., Maeda, Ki: Phys. Rev. D 55, 739 (1997). https://doi.org/10.1103/PhysRevD.55.739. arXiv:gr-qc/9606034 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  70. Alexeev, S.O., Pomazanov, M.V.: Phys. Rev. D 55, 2110 (1997). https://doi.org/10.1103/PhysRevD.55.2110. arXiv:hep-th/9605106 [hep-th]

    Article  ADS  Google Scholar 

  71. Kleihaus, B., Kunz, J., Radu, E.: Phys. Rev. Lett. 106, 151104 (2011). https://doi.org/10.1103/PhysRevLett.106.151104. arXiv:1101.2868 [gr-qc]

    Article  ADS  Google Scholar 

  72. Kleihaus, B., Kunz, J., Mojica, S.: Phys. Rev. D 90(6), 061501 (2014). https://doi.org/10.1103/PhysRevD.90.061501. arXiv:1407.6884 [gr-qc]

    Article  ADS  Google Scholar 

  73. Kokkotas, K.D., Konoplya, R.A., Zhidenko, A.: Phys. Rev. D 96(6), 064004 (2017). https://doi.org/10.1103/PhysRevD.96.064004. arXiv:1706.07460 [gr-qc]

    Article  ADS  Google Scholar 

  74. Deffayet, C., Deser, S., Esposito-Farese, G.: Phys. Rev. D 80, 064015 (2009). https://doi.org/10.1103/PhysRevD.80.064015. arXiv:0906.1967 [gr-qc]

    Article  ADS  Google Scholar 

  75. Crisostomi, M., Noui, K., Charmousis, C., Langlois, D: (2017). arXiv:1710.04531 [hep-th]

  76. Papallo, G.: (2017). arXiv:1710.10155 [gr-qc]

  77. Mignemi, S., Stewart, N.R.: Phys. Rev. D 47, 5259 (1993). https://doi.org/10.1103/PhysRevD.47.5259. arXiv:hep-th/9212146 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  78. Mignemi, S.: Phys. Rev. D 51, 934 (1995). https://doi.org/10.1103/PhysRevD.51.934. arXiv:hep-th/9303102 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  79. Sotiriou, T.P., Zhou, S.Y.: Phys. Rev. D 90, 124063 (2014). https://doi.org/10.1103/PhysRevD.90.124063. arXiv:1408.1698 [gr-qc]

    Article  ADS  Google Scholar 

  80. Pani, P., Macedo, C.F.B., Crispino, L.C.B., Cardoso, V.: Phys. Rev. D 84, 087501 (2011). https://doi.org/10.1103/PhysRevD.84.087501. arXiv:1109.3996 [gr-qc]

    Article  ADS  Google Scholar 

  81. Ayzenberg, D., Yunes, N.: Phys. Rev. D 90, 044066 (2014). https://doi.org/10.1103/PhysRevD.91.069905,10.1103/PhysRevD.90.044066. Erratum: Phys. Rev. D91, no.6, 069905 (2015). arXiv:1405.2133 [gr-qc]

    Article  ADS  Google Scholar 

  82. Maselli, A., Pani, P., Gualtieri, L., Ferrari, V.: Phys. Rev. D 92(8), 083014 (2015). https://doi.org/10.1103/PhysRevD.92.083014. arXiv:1507.00680 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  83. Will, C.M., Zaglauer, H.W.: Astrophys. J. 346, 366 (1989). https://doi.org/10.1086/168016

    Article  ADS  Google Scholar 

  84. Alty, L.J.: J. Math. Phys. 36, 3094 (1995). https://doi.org/10.1063/1.531015

    Article  ADS  MathSciNet  Google Scholar 

  85. Gilkey, P., Park, J.H.: J. Geom. Phys. 88, 88 (2014). https://doi.org/10.1016/j.geomphys.2014.11.006

    Article  ADS  Google Scholar 

  86. Benkel, R., Sotiriou, T.P., Witek, H.: Class. Quantum Gravity 34(6), 064001 (2017). https://doi.org/10.1088/1361-6382/aa5ce7. arXiv:1610.09168 [gr-qc]

    Article  ADS  Google Scholar 

  87. Benkel, R., Sotiriou, T.P., Witek, H.: Phys. Rev. D 94(12), 121503 (2016). https://doi.org/10.1103/PhysRevD.94.121503. arXiv:1612.08184 [gr-qc]

    Article  ADS  Google Scholar 

  88. Barausse, E., Yagi, K.: Phys. Rev. Lett. 115(21), 211105 (2015). https://doi.org/10.1103/PhysRevLett.115.211105. arXiv:1509.04539 [gr-qc]

    Article  ADS  Google Scholar 

  89. Barausse, E.: In: Proceedings, 3rd International Symposium on Quest for the Origin of Particles and the Universe (KMI2017): Nagoya, Japan, January 5–7, 2017. https://inspirehep.net/record/1517771/files/arXiv:1703.05699.pdf (2017)

  90. Lehebel, A., Babichev, E., Charmousis, C.: JCAP 1707(07), 037 (2017). https://doi.org/10.1088/1475-7516/2017/07/037. arXiv:1706.04989 [gr-qc]

    Article  ADS  Google Scholar 

  91. Silva, H.O., Sakstein, J., Gualtieri, L., Sotiriou, T.P., Berti, E.: (2017). arXiv:1711.02080 [gr-qc]

  92. Doneva, D.D., Yazadjiev, S.S.: (2017). arXiv:1712.03715 [gr-qc]

  93. Antoniou, G., Bakopoulos, A., Kanti, P.: (2017). arXiv:1711.03390 [hep-th]

  94. Antoniou, G., Bakopoulos, A., Kanti, P.: (2017). arXiv:1711.07431 [hep-th]

  95. Taveras, V., Yunes, N.: Phys. Rev. D 78, 064070 (2008). https://doi.org/10.1103/PhysRevD.78.064070. arXiv:0807.2652 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  96. Calcagni, G., Mercuri, S.: (2009). arXiv:0902.0957 [gr-qc]

  97. Weinberg, S.: Phys. Rev. D 77, 123541 (2008). https://doi.org/10.1103/PhysRevD.77.123541. arXiv:0804.4291 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  98. Delsate, T., Hilditch, D., Witek, H.: Phys. Rev. D 91(2), 024027 (2015). https://doi.org/10.1103/PhysRevD.91.024027. arXiv:1407.6727 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  99. Konno, K., Matsuyama, T., Tanda, S.: Prog. Theor. Phys. 122, 561 (2009). https://doi.org/10.1143/PTP.122.561. arXiv:0902.4767 [gr-qc]

    Article  ADS  Google Scholar 

  100. Yagi, K., Yunes, N., Tanaka, T.: Phys. Rev. D 86, 044037 (2012). https://doi.org/10.1103/PhysRevD.89.049902,10.1103/PhysRevD.86.044037. Erratum: Phys. Rev. D89, 049902 (2014). arXiv:1206.6130 [gr-qc]

    Article  ADS  Google Scholar 

  101. Stein, L.C.: Phys. Rev. D 90(4), 044061 (2014). https://doi.org/10.1103/PhysRevD.90.044061. arXiv:1407.2350 [gr-qc]

    Article  ADS  Google Scholar 

  102. McNees, R., Stein, L.C., Yunes, N.: Class. Quantum Gravity 33(23), 235013 (2016). https://doi.org/10.1088/0264-9381/33/23/235013. arXiv:1512.05453 [gr-qc]

    Article  ADS  Google Scholar 

  103. Jackiw, R., Pi, S.Y.: Phys. Rev. D 68, 104012 (2003). https://doi.org/10.1103/PhysRevD.68.104012. arXiv:gr-qc/0308071 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  104. Yunes, N., Sopuerta, C.F.: Phys. Rev. D 77, 064007 (2008). https://doi.org/10.1103/PhysRevD.77.064007. arXiv:0712.1028 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  105. Grumiller, D., Yunes, N.: Phys. Rev. D 77, 044015 (2008). https://doi.org/10.1103/PhysRevD.77.044015. arXiv:0711.1868 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  106. Ali-Haimoud, Y., Chen, Y.: Phys. Rev. D 84, 124033 (2011). arXiv:1110.5329 [astro-ph.HE]

    Article  ADS  Google Scholar 

  107. Yagi, K., Stein, L., Yunes, N., Tanaka, T.: Phys. Rev. D 87, 084058 (2013). https://doi.org/10.1103/PhysRevD.87.084058. arXiv:1302.1918 [gr-qc]

    Article  ADS  Google Scholar 

  108. Horava, P.: Phys. Rev. D 79, 084008 (2009). https://doi.org/10.1103/PhysRevD.79.084008. arXiv:0901.3775 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  109. Wang, A.: Int. J. Mod. Phys. D 26(07), 1730014 (2017). https://doi.org/10.1142/S0218271817300142. arXiv:1701.06087 [gr-qc]

    Article  ADS  Google Scholar 

  110. Kostelecky, V.A.: Phys. Rev. D 69, 105009 (2004). arxiv:hep-th/0312310 [hep-th]

    Article  ADS  Google Scholar 

  111. Kostelecky, V.A., Russell, N.: Rev. Mod. Phys. 83, 11 (2011). https://doi.org/10.1103/RevModPhys.83.11. arXiv:0801.0287 [hep-ph]

    Article  ADS  Google Scholar 

  112. Mattingly, D.: Living Rev. Rel. 8, 5 (2005). arxiv:gr-qc/0502097 [gr-qc]

    Article  Google Scholar 

  113. Jacobson, T., Liberati, S., Mattingly, D.: Ann. Phys. 321, 150 (2006). https://doi.org/10.1016/j.aop.2005.06.004. arXiv:astro-ph/0505267 [astro-ph]

    Article  ADS  Google Scholar 

  114. Colladay, D., Kostelecky, V.A.: Phys. Rev. D 58, 116002 (1998). https://doi.org/10.1103/PhysRevD.58.116002. arXiv:hep-ph/9809521 [hep-ph]

    Article  ADS  Google Scholar 

  115. Kostelecky, V.A.: (1998). arXiv:hep-ph/9810239 [hep-ph]

  116. Kostelecky, V.A.: (1999), pp. 151–163. arXiv:hep-ph/9912528 [hep-ph]

  117. Kostelecky, A.V., Tasson, J.D.: Phys. Rev. D 83, 016013 (2011). https://doi.org/10.1103/PhysRevD.83.016013. arXiv:1006.4106 [gr-qc]

    Article  ADS  Google Scholar 

  118. Liberati, S.: Class. Quantum Gravity 30, 133001 (2013). https://doi.org/10.1088/0264-9381/30/13/133001. arXiv:1304.5795 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  119. Pospelov, M., Shang, Y.: Phys. Rev. D 85, 105001 (2012). https://doi.org/10.1103/PhysRevD.85.105001. arXiv:1010.5249 [hep-th]

    Article  ADS  Google Scholar 

  120. Bailey, Q.G., Kostelecky, V.A.: Phys. Rev. D 74, 045001 (2006). https://doi.org/10.1103/PhysRevD.74.045001. arXiv:gr-qc/0603030 [gr-qc]

    Article  ADS  Google Scholar 

  121. Bailey, Q.G.: Phys. Rev. D 80, 044004 (2009). https://doi.org/10.1103/PhysRevD.80.044004. arXiv:0904.0278 [gr-qc]

    Article  ADS  Google Scholar 

  122. Bailey, Q.G., Everett, R.D., Overduin, J.M.: (2013). arXiv:1309.6399 [hep-ph]

  123. Jacobson, T., Mattingly, D.: Phys. Rev. D 64, 024028 (2001). https://doi.org/10.1103/PhysRevD.64.024028. arXiv:gr-qc/0007031 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  124. Jacobson, T.: PoS QG-PH, 020. (2007). arXiv:0801.1547 [gr-qc]

  125. Blas, D., Pujolas, O., Sibiryakov, S.: Phys. Rev. Lett. 104, 181302 (2010). https://doi.org/10.1103/PhysRevLett.104.181302. arXiv:0909.3525 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  126. Yagi, K., Blas, D., Yunes, N., Barausse, E.: Phys. Rev. Lett. 112(16), 161101 (2014). https://doi.org/10.1103/PhysRevLett.112.161101. arXiv:1307.6219 [gr-qc]

    Article  ADS  Google Scholar 

  127. Yagi, K., Blas, D., Barausse, E., Yunes, N.: Phys. Rev. D 89, 084067 (2014). https://doi.org/10.1103/PhysRevD.89.084067. arXiv:1311.7144 [gr-qc]

    Article  ADS  Google Scholar 

  128. Abbott, B.P., et al.: Astrophys. J. 848(2), L13 (2017). https://doi.org/10.3847/2041-8213/aa920c. arXiv:1710.05834 [astro-ph.HE]

    Article  ADS  Google Scholar 

  129. Jacobson, T., Mattingly, D.: Phys. Rev. D 70, 024003 (2004). https://doi.org/10.1103/PhysRevD.70.024003. arXiv:gr-qc/0402005 [gr-qc]

    Article  ADS  Google Scholar 

  130. Foster, B.Z., Jacobson, T.: Phys. Rev. D 73, 064015 (2006). https://doi.org/10.1103/PhysRevD.73.064015. arXiv:gr-qc/0509083 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  131. Foster, B.Z.: Phys. Rev. D 73, 104012 (2006). https://doi.org/10.1103/PhysRevD.75.129904,10.1103/PhysRevD.73.104012. arXiv:gr-qc/0602004 [gr-qc]

    Article  ADS  Google Scholar 

  132. Foster, B.Z.: Phys. Rev. D 76, 084033 (2007). https://doi.org/10.1103/PhysRevD.76.084033. arXiv:0706.0704 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  133. Blas, D., Pujolas, O., Sibiryakov, S.: JHEP 1104, 018 (2011). https://doi.org/10.1007/JHEP04(2011)018. arXiv:1007.3503 [hep-th]

    Article  ADS  Google Scholar 

  134. Audren, B., Blas, D., Lesgourgues, J., Sibiryakov, S.: JCAP 1308, 039 (2013). https://doi.org/10.1088/1475-7516/2013/08/039. arXiv:1305.0009 [astro-ph.CO]

    Article  ADS  Google Scholar 

  135. Gumrukcuoglu, A.E., Saravani, M., Sotiriou, T.P.: (2017). arXiv:1711.08845 [gr-qc]

  136. Blas, D., Sanctuary, H.: Phys. Rev. D 84, 064004 (2011). https://doi.org/10.1103/PhysRevD.84.064004. arXiv:1105.5149 [gr-qc]

    Article  ADS  Google Scholar 

  137. Arkani-Hamed, N., Dimopoulos, S., Dvali, G.R.: Phys. Lett. B 429, 263 (1998). https://doi.org/10.1016/S0370-2693(98)00466-3. arXiv:hep-ph/9803315 [hep-ph]

    Article  ADS  Google Scholar 

  138. Arkani-Hamed, N., Dimopoulos, S., Dvali, G.R.: Phys. Rev. D 59, 086004 (1999). https://doi.org/10.1103/PhysRevD.59.086004. arXiv:hep-ph/9807344 [hep-ph]

    Article  ADS  Google Scholar 

  139. Garriga, J., Tanaka, T.: Phys. Rev. Lett. 84, 2778 (2000). https://doi.org/10.1103/PhysRevLett.84.2778. arXiv:hep-th/9911055 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  140. Adelberger, E.G., Heckel, B.R., Hoedl, S.A., Hoyle, C.D., Kapner, D.J., Upadhye, A.: Phys. Rev. Lett. 98, 131104 (2007). https://doi.org/10.1103/PhysRevLett.98.131104. arXiv:hep-ph/0611223 [hep-ph]

    Article  ADS  Google Scholar 

  141. Maldacena, J.M.: Int. J. Theor. Phys. 38, 1113 (1999). https://doi.org/10.1023/A:1026654312961. Adv. Theor. Math. Phys. 2, 231 (1998). arXiv:hep-th/9711200 [hep-th]

    Article  MathSciNet  Google Scholar 

  142. Aharony, O., Gubser, S.S., Maldacena, J.M., Ooguri, H., Oz, Y.: Phys. Rep. 323, 183 (2000). https://doi.org/10.1016/S0370-1573(99)00083-6. arXiv:hep-th/9905111 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  143. Emparan, R., Fabbri, A., Kaloper, N.: JHEP 08, 043 (2002). arXiv:hep-th/0206155 [hep-th]

    Article  ADS  Google Scholar 

  144. Tanaka, T.: Prog. Theor. Phys. Suppl. 148, 307 (2003). https://doi.org/10.1143/PTPS.148.307. arXiv:gr-qc/0203082 [gr-qc]

    Article  ADS  Google Scholar 

  145. Emparan, R., Garcia-Bellido, J., Kaloper, N.: JHEP 01, 079 (2003). https://doi.org/10.1088/1126-6708/2003/01/079. arXiv:hep-th/0212132 [hep-th]

    Article  ADS  Google Scholar 

  146. Figueras, P., Wiseman, T.: Phys. Rev. Lett. 107, 081101 (2011). https://doi.org/10.1103/PhysRevLett.107.081101. arXiv:1105.2558 [hep-th]

    Article  ADS  Google Scholar 

  147. Abdolrahimi, S., Cattoen, C., Page, D.N., Yaghoobpour-Tari, S.: Phys. Lett. B 720, 405 (2013). https://doi.org/10.1016/j.physletb.2013.02.034. arXiv:1206.0708 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  148. Babichev, E., Dokuchaev, V., Eroshenko, Y.: Phys. Rev. Lett. 93, 021102 (2004). https://doi.org/10.1103/PhysRevLett.93.021102. arXiv:gr-qc/0402089 [gr-qc]

    Article  ADS  Google Scholar 

  149. Babichev, E., Dokuchaev, V., Eroshenko, Y.: J. Exp. Theor. Phys. 100, 528 (2005). https://doi.org/10.1134/1.1901765. Zh. Eksp. Teor. Fiz. 127, 597(2005). arXiv:astroph/0505618 [astro-ph]

    Article  ADS  Google Scholar 

  150. Babichev, E.O., Dokuchaev, V.I., Eroshenko, Y.N.: Phys. Usp. 56, 1155 (2013). https://doi.org/10.3367/UFNr.0183.201312a.1257,10.3367/UFNe.0183.201312a.1257. Usp. Fiz. Nauk 189, no.12, 1257 (2013). arXiv:1406.0841 [gr-qc]

    Article  ADS  Google Scholar 

  151. Yunes, N., Pretorius, F., Spergel, D.: Phys. Rev. D 81, 064018 (2010). https://doi.org/10.1103/PhysRevD.81.064018. arXiv:0912.2724 [gr-qc]

    Article  ADS  Google Scholar 

  152. Nordtvedt, K.: Phys. Rev. 169, 1017 (1968)

    Article  ADS  Google Scholar 

  153. Will, C.M.: APJ 163, 611 (1971)

    Article  ADS  Google Scholar 

  154. Will, C.M., Nordtvedt, K.J.: APJ 177, 757 (1972)

    Article  ADS  Google Scholar 

  155. Nordtvedt, K.J., Will, C.M.: APJ 177, 775 (1972)

    Article  ADS  Google Scholar 

  156. Arun, K.G., Iyer, B.R., Qusailah, M.S.S., Sathyaprakash, B.S.: Class. Quantum Gravity 23, L37 (2006). https://doi.org/10.1088/0264-9381/23/9/L01. arXiv:gr-qc/0604018 [gr-qc]

    Article  ADS  Google Scholar 

  157. Arun, K.G., Iyer, B.R., Qusailah, M.S.S., Sathyaprakash, B.S.: Phys. Rev. D 74, 024006 (2006). https://doi.org/10.1103/PhysRevD.74.024006. arXiv:gr-qc/0604067 [gr-qc]

    Article  ADS  Google Scholar 

  158. Mishra, C.K., Arun, K.G., Iyer, B.R., Sathyaprakash, B.S.: Phys. Rev. D 82, 064010 (2010). https://doi.org/10.1103/PhysRevD.82.064010. arXiv:1005.0304 [gr-qc]

    Article  ADS  Google Scholar 

  159. Damour, T., Taylor, J.H.: Phys. Rev. D 45, 1840 (1992). https://doi.org/10.1103/PhysRevD.45.1840

    Article  ADS  Google Scholar 

  160. Alexander, S., Finn, L.S., Yunes, N.: Phys. Rev. D 78, 066005 (2008). https://doi.org/10.1103/PhysRevD.78.066005. arXiv:0712.2542 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  161. Yunes, N., O’Shaughnessy, R., Owen, B.J., Alexander, S.: Phys. Rev. D 82, 064017 (2010). https://doi.org/10.1103/PhysRevD.82.064017. arXiv:1005.3310 [gr-qc]

    Article  ADS  Google Scholar 

  162. Yagi, K., Yang, H.: (2017). arXiv:1712.00682 [gr-qc]

  163. Husa, S., Khan, S., Hannam, M., Purrer, M., Ohme, F., Forteza, X.J., Bohe, A.: Phys. Rev. D 93, 044006 (2016). https://doi.org/10.1103/PhysRevD.93.044006. Phys. Rev. D93, 044006 (2016). arXiv:1508.07250 [gr-qc]

    Article  ADS  Google Scholar 

  164. Khan, S., Husa, S., Hannam, M., Ohme, F., Purrer, M., Forteza, X.J., Bohe, A.: Phys. Rev. D 93, 044007 (2016). https://doi.org/10.1103/PhysRevD.93.044007. Phys. Rev. D 93, 044007 (2016). arXiv:1508.07253 [gr-qc]

    Article  ADS  Google Scholar 

  165. Yunes, N., Pretorius, F.: Phys. Rev. D 80, 122003 (2009). https://doi.org/10.1103/PhysRevD.80.122003. arXiv:0909.3328 [gr-qc]

    Article  ADS  Google Scholar 

  166. Cornish, N., Sampson, L., Yunes, N., Pretorius, F.: Phys. Rev. D 84, 062003 (2011). https://doi.org/10.1103/PhysRevD.84.062003. arXiv:1105.2088 [gr-qc]

    Article  ADS  Google Scholar 

  167. Chatziioannou, K., Yunes, N., Cornish, N.: Phys. Rev. D 86, 022004 (2012). https://doi.org/10.1103/PhysRevD.86.022004. arXiv:1204.2585 [gr-qc]

    Article  ADS  Google Scholar 

  168. Sampson, L., Cornish, N., Yunes, N.: Phys. Rev. D 89(6), 064037 (2014). https://doi.org/10.1103/PhysRevD.89.064037. arXiv:1311.4898 [gr-qc]

    Article  ADS  Google Scholar 

  169. Sampson, L., Cornish, N., Yunes, N.: Phys. Rev. D 87(10), 102001 (2013). https://doi.org/10.1103/PhysRevD.87.102001. arXiv:1303.1185 [gr-qc]

    Article  ADS  Google Scholar 

  170. Vallisneri, M., Yunes, N.: Phys. Rev. D 87(10), 102002 (2013). https://doi.org/10.1103/PhysRevD.87.102002. arXiv:1301.2627 [gr-qc]

    Article  ADS  Google Scholar 

  171. Tso, R., Isi, M., Chen, Y., Stein, L.: In: Proceedings, 7th Meeting on CPT and Lorentz Symmetry (CPT 16): Bloomington, Indiana, USA, June 20–24, 2016, pp. 205–208. (2017). https://doi.org/10.1142/9789813148505_0052. https://inspirehep.net/record/1479158/files/arXiv:1608.01284.pdf

  172. Krishnendu, N.V., Arun, K.G., Mishra, C.K.: Phys. Rev. Lett. 119(9), 091101 (2017). https://doi.org/10.1103/PhysRevLett.119.091101. arXiv:1701.06318 [gr-qc]

    Article  ADS  Google Scholar 

  173. Chatziioannou, K., Cornish, N., Klein, A., Yunes, N.: Astrophys. J. 798(1), L17 (2015). https://doi.org/10.1088/2041-8205/798/1/L17. arXiv:1402.3581 [gr-qc]

    Article  ADS  Google Scholar 

  174. Chatziioannou, K., Cornish, N., Klein, A., Yunes, N.: Phys. Rev. D 89(10), 104023 (2014). https://doi.org/10.1103/PhysRevD.89.104023. arXiv:1404.3180 [gr-qc]

    Article  ADS  Google Scholar 

  175. Chatziioannou, K., Klein, A., Cornish, N., Yunes, N.: Phys. Rev. Lett. 118(5), 051101 (2017). https://doi.org/10.1103/PhysRevLett.118.051101. arXiv:1606.03117 [gr-qc]

    Article  ADS  Google Scholar 

  176. Chatziioannou, K., Klein, A., Yunes, N., Cornish, N.: Phys. Rev. D 95(10), 104004 (2017). https://doi.org/10.1103/PhysRevD.95.104004. arXiv:1703.03967 [gr-qc]

    Article  ADS  Google Scholar 

  177. Cardoso, V., Franzin, E., Maselli, A., Pani, P., Raposo, G.: Phys. Rev. D 95(8), 084014 (2017). https://doi.org/10.1103/PhysRevD.95.089901. Addendum: Phys. Rev. D 95, no.8, 089901 (2017). arXiv:1701.01116 [gr-qc]

    Article  ADS  Google Scholar 

  178. Maselli, A., Pani, P., Cardoso, V., Abdelsalhin, T., Gualtieri, L., Ferrari, V.: (2017). arXiv:1703.10612 [gr-qc]

  179. Jacobson, T.: Phys. Rev. Lett. 83, 2699 (1999). https://doi.org/10.1103/PhysRevLett.83.2699. arXiv:astro-ph/9905303 [astro-ph]

    Article  ADS  MathSciNet  Google Scholar 

  180. Horbatsch, M.W., Burgess, C.P.: JCAP 1205, 010 (2012). https://doi.org/10.1088/1475-7516/2012/05/010. arXiv:1111.4009 [gr-qc]

    Article  ADS  Google Scholar 

  181. Yagi, K., Yunes, N., Tanaka, T.: Phys. Rev. Lett. 109, 251105 (2012). https://doi.org/10.1103/PhysRevLett.116.169902,10.1103/PhysRevLett.109.251105. Erratum: Phys. Rev. Lett. 116, no.16, 169902 (2016). arXiv:1208.5102 [gr-qc]

    Article  ADS  Google Scholar 

  182. Hansen, D., Yunes, N., Yagi, K.: Phys. Rev. D 91(8), 082003 (2015). https://doi.org/10.1103/PhysRevD.91.082003. arXiv:1412.4132 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  183. Yagi, K., Tanahashi, N., Tanaka, T.: Phys. Rev. D 83, 084036 (2011). https://doi.org/10.1103/PhysRevD.83.084036. arXiv:1101.4997 [gr-qc]

    Article  ADS  Google Scholar 

  184. Mirshekari, S., Yunes, N., Will, C.M.: Phys. Rev. D 85, 024041 (2012). https://doi.org/10.1103/PhysRevD.85.024041. arXiv:1110.2720 [gr-qc]

    Article  ADS  Google Scholar 

  185. Eardley, D.M.: APJ 196, L59 (1975). https://doi.org/10.1086/181744

    Article  ADS  Google Scholar 

  186. Will, C.M.: Astrophys. J. 214, 826 (1977). https://doi.org/10.1086/155313

    Article  ADS  Google Scholar 

  187. Damour, T., Esposito-Farese, G.: Phys. Rev. D 58, 042001 (1998). https://doi.org/10.1103/PhysRevD.58.042001. arXiv:gr-qc/9803031 [gr-qc]

    Article  ADS  Google Scholar 

  188. Will, C.M., Wiseman, A.G.: Phys. Rev. D 54, 4813 (1996). https://doi.org/10.1103/PhysRevD.54.4813. arXiv:gr-qc/9608012 [gr-qc]

    Article  ADS  Google Scholar 

  189. Pati, M.E., Will, C.M.: Phys. Rev. D 62, 124015 (2000). https://doi.org/10.1103/PhysRevD.62.124015. arXiv:gr-qc/0007087 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  190. Pati, M.E., Will, C.M.: Phys. Rev. D 65, 104008 (2002). https://doi.org/10.1103/PhysRevD.65.104008. arXiv:gr-qc/0201001 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  191. Mirshekari, S., Will, C.M.: Phys. Rev. D 87(8), 084070 (2013). https://doi.org/10.1103/PhysRevD.87.084070. arXiv:1301.4680 [gr-qc]

    Article  ADS  Google Scholar 

  192. Lang, R.N.: Phys. Rev. D 89(8), 084014 (2014). https://doi.org/10.1103/PhysRevD.89.084014. arXiv:1310.3320 [gr-qc]

    Article  ADS  Google Scholar 

  193. Lang, R.N.: Phys. Rev. D 91(8), 084027 (2015). https://doi.org/10.1103/PhysRevD.91.084027. arXiv:1411.3073 [gr-qc]

    Article  ADS  Google Scholar 

  194. Sennett, N., Marsat, S., Buonanno, A.: Phys. Rev. D 94(8), 084003 (2016). https://doi.org/10.1103/PhysRevD.94.084003. arXiv:1607.01420 [gr-qc]

    Article  ADS  Google Scholar 

  195. Julié, F.L., Deruelle, N.: Phys. Rev. D 95(12), 124054 (2017). https://doi.org/10.1103/PhysRevD.95.124054. arXiv:1703.05360 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  196. Julié, F.L.: (2017). arXiv:1709.09742 [gr-qc]

  197. Buonanno, A., Damour, T.: Phys. Rev. D 59, 084006 (1999). https://doi.org/10.1103/PhysRevD.59.084006. arXiv:gr-qc/9811091 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  198. Will, C.M.: Phys. Rev. D 57, 2061 (1998). https://doi.org/10.1103/PhysRevD.57.2061. arXiv:gr-qc/9709011 [gr-qc]

    Article  ADS  Google Scholar 

  199. Rubakov, V.A., Tinyakov, P.G.: Phys. Usp. 51, 759 (2008). https://doi.org/10.1070/PU2008v051n08ABEH006600. arXiv:0802.4379 [hep-th]

    Article  ADS  Google Scholar 

  200. Hinterbichler, K.: Rev. Mod. Phys. 84, 671 (2012). https://doi.org/10.1103/RevModPhys.84.671. arXiv:1105.3735 [hep-th]

    Article  ADS  Google Scholar 

  201. de Rham, C.: Living Rev. Rel. 17, 7 (2014). https://doi.org/10.12942/lrr-2014-7. arXiv:1401.4173 [hep-th]

    Article  Google Scholar 

  202. Calcagni, G.: Phys. Rev. Lett. 104, 251301 (2010). https://doi.org/10.1103/PhysRevLett.104.251301. arXiv:0912.3142 [hep-th]

    Article  ADS  Google Scholar 

  203. Calcagni, G.: Adv. Theor. Math. Phys. 16(2), 549 (2012). https://doi.org/10.4310/ATMP.2012.v16.n2.a5. arXiv:1106.5787 [hep-th]

    Article  MathSciNet  Google Scholar 

  204. Calcagni, G.: JHEP 01, 065 (2012). https://doi.org/10.1007/JHEP01(2012)065. arXiv:1107.5041 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  205. Calcagni, G.: (2016). arXiv:1603.03046 [gr-qc]

  206. Amelino-Camelia, G.: Phys. Lett. B 510, 255 (2001). https://doi.org/10.1016/S0370-2693(01)00506-8. arXiv:hep-th/0012238 [hep-th]

    Article  ADS  Google Scholar 

  207. Magueijo, J., Smolin, L.: Phys. Rev. Lett. 88, 190403 (2002). https://doi.org/10.1103/PhysRevLett.88.190403. arXiv:hep-th/0112090 [hep-th]

    Article  ADS  Google Scholar 

  208. Amelino-Camelia, G.: Nature 418, 34 (2002). https://doi.org/10.1038/418034a. arXiv:gr-qc/0207049 [gr-qc]

    Article  ADS  Google Scholar 

  209. Amelino-Camelia, G.: Symmetry 2, 230 (2010). https://doi.org/10.3390/sym2010230. arXiv:1003.3942 [gr-qc]

    Article  Google Scholar 

  210. Sefiedgar, A.S., Nozari, K., Sepangi, H.R.: Phys. Lett. B 696, 119 (2011). https://doi.org/10.1016/j.physletb.2010.11.067. arXiv:1012.1406 [gr-qc]

    Article  ADS  Google Scholar 

  211. Kostelecky, V.A., Mewes, M.: Phys. Lett. B 757, 510 (2016). https://doi.org/10.1016/j.physletb.2016.04.040. arXiv:1602.04782 [gr-qc]

    Article  ADS  Google Scholar 

  212. Horava, P.: JHEP 03, 020 (2009). https://doi.org/10.1088/1126-6708/2009/03/020. arXiv:0812.4287 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  213. Vacaru, S.I.: Gen. Relativ. Gravit. 44, 1015 (2012). https://doi.org/10.1007/s10714-011-1324-1. arXiv:1010.5457 [math-ph]

    Article  ADS  Google Scholar 

  214. Abbott, B.P., et al.: Phys. Rev. Lett. 116(22), 221101 (2016). https://doi.org/10.1103/PhysRevLett.116.221101. arXiv:1602.03841 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  215. Abbott, B.P., et al.: (2016). arXiv:1606.04856 [gr-qc]

  216. Yunes, N., Hughes, S.A.: Phys. Rev. D 82, 082002 (2010). https://doi.org/10.1103/PhysRevD.82.082002. arXiv:1007.1995 [gr-qc]

    Article  ADS  Google Scholar 

  217. Sampson, L., Yunes, N., Cornish, N.: Phys. Rev. D 88(6), 064056 (2013). https://doi.org/10.1103/PhysRevD.88.089902. Erratum: Phys. Rev. D 88, no.8, 089902 (2013). arXiv:1307.8144 [gr-qc]

    Article  ADS  Google Scholar 

  218. Amendola, L., Charmousis, C., Davis, S.C.: JCAP 0710, 004 (2007). https://doi.org/10.1088/1475-7516/2007/10/004. arXiv:0704.0175 [astro-ph]

    Article  ADS  Google Scholar 

  219. Johannsen, T., Psaltis, D., McClintock, J.E.: Astrophys. J. 691, 997 (2009). https://doi.org/10.1088/0004-637X/691/2/997. arXiv:0803.1835 [astro-ph]

    Article  ADS  Google Scholar 

  220. Johannsen, T.: Astron. Astrophys. 507, 617 (2009). https://doi.org/10.1051/0004-6361/200912803. arXiv:0812.0809

    Article  ADS  Google Scholar 

  221. Psaltis, D.: Phys. Rev. Lett. 98, 181101 (2007). https://doi.org/10.1103/PhysRevLett.98.181101. arXiv:astro-ph/0612611

    Article  ADS  MathSciNet  Google Scholar 

  222. Gnedin, O.Y., Maccarone, T.J., Psaltis, D., Zepf, S.E.: Astrophys. J. 705, L168 (2009). https://doi.org/10.1088/0004-637X/705/2/L168. arXiv:0906.5351 [astro-ph.CO]

    Article  ADS  Google Scholar 

  223. Manchester, R.N.: Int. J. Mod. Phys. D 24(06), 1530018 (2015). https://doi.org/10.1142/S0218271815300189. arXiv:1502.05474 [gr-qc]

    Article  ADS  Google Scholar 

  224. Konopliv, A.S., Asmar, S.W., Folkner, W.M., Karatekin, Ö., Nunes, D.C., Smrekar, S.E., Yoder, C.F., Zuber, M.T.: Icarus 211, 401 (2011). https://doi.org/10.1016/j.icarus.2010.004

    Article  ADS  Google Scholar 

  225. Hofmann, F., Müller, J., Biskupek, L.: Astron. Astrophys. 522, L5 (2010). https://doi.org/10.1051/0004-6361/201015659

    Article  ADS  Google Scholar 

  226. Copi, C.J., Davis, A.N., Krauss, L.M.: Phys. Rev. Lett. 92, 171301 (2004). https://doi.org/10.1103/PhysRevLett.92.171301. arXiv:astro-ph/0311334 [astro-ph]

    Article  ADS  Google Scholar 

  227. Bambi, C., Giannotti, M., Villante, F.L.: Phys. Rev. D 71, 123524 (2005). https://doi.org/10.1103/PhysRevD.71.123524. arXiv:astro-ph/0503502 [astro-ph]

    Article  ADS  Google Scholar 

  228. Talmadge, C., Berthias, J.P., Hellings, R.W., Standish, E.M.: Phys. Rev. Lett. 61, 1159 (1988). https://doi.org/10.1103/PhysRevLett.61.1159

    Article  ADS  Google Scholar 

  229. Finn, L.S., Sutton, P.J.: Phys. Rev. D 65, 044022 (2002). https://doi.org/10.1103/PhysRevD.65.044022. arXiv:gr-qc/0109049

    Article  ADS  Google Scholar 

  230. Goldhaber, A.S., Nieto, M.M.: Phys. Rev. D 9, 1119 (1974). https://doi.org/10.1103/PhysRevD.9.1119

    Article  ADS  Google Scholar 

  231. Hare, M.G.: Can. J. Phys. 51, 431 (1973). https://doi.org/10.1139/p73-056

    Article  ADS  Google Scholar 

  232. Brito, R., Cardoso, V., Pani, P.: Phys. Rev. D 88(2), 023514 (2013). https://doi.org/10.1103/PhysRevD.88.023514. arXiv:1304.6725 [gr-qc]

    Article  ADS  Google Scholar 

  233. Kiyota, S., Yamamoto, K.: Phys. Rev. D 92(10), 104036 (2015). https://doi.org/10.1103/PhysRevD.92.104036. arXiv:1509.00610 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  234. Blas, D., Ivanov, M.M., Sawicki, I., Sibiryakov, S.: Pisma Zh. Eksp. Teor. Fiz. 103(10), 708 (2016). https://doi.org/10.7868/S0370274X16100039. JETP Lett. 103, no.10, 624 (2016). arXiv:1602.04188 [gr-qc]

    Article  Google Scholar 

  235. Cornish, N., Blas, D., Nardini, G.: (2017). arXiv:1707.06101 [gr-qc]

  236. Kobakhidze, A., Lagger, C., Manning, A.: Phys. Rev. D 94(6), 064033 (2016). https://doi.org/10.1103/PhysRevD.94.064033. arXiv:1607.03776 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  237. Max, K., Platscher, M., Smirnov, J.: Phys. Rev. Lett. 119(11), 111101 (2017). https://doi.org/10.1103/PhysRevLett.119.111101. arXiv:1703.07785 [gr-qc]

    Article  ADS  Google Scholar 

  238. De Felice, A., Nakamura, T., Tanaka, T.: PTEP 2014, 043E01. (2014). https://doi.org/10.1093/ptep/ptu024. arXiv:1304.3920 [gr-qc]

  239. Gbm, F., et al.: Astrophys. J. 848, L12 (2017). https://doi.org/10.3847/2041-8213/aa91c9. arXiv:1710.05833 [astro-ph.HE]

    Article  ADS  Google Scholar 

  240. Boran, S., Desai, S., Kahya, E.O., Woodard, R.P.: (2017). arXiv:1710.06168 [astro-ph.HE]

  241. Shoemaker, I.M., Murase, K.: (2017). arXiv:1710.06427 [astro-ph.HE]

  242. Wang, H., et al.: (2017). arXiv:1710.05805 [astro-ph.HE]

  243. Wei, J.J., Fan, X.L., Zhang, B.B., Wu, X.F., Gao, H., Mészáros, P., Zhang, B., Dai, Z.G., Zhang, S.N., Zhu, Z.H.: (2017). arXiv:1710.05860 [astro-ph.HE]

  244. Lombriser, L., Taylor, A.: JCAP 1603(03), 031 (2016). https://doi.org/10.1088/1475-7516/2016/03/031. arXiv:1509.08458 [astro-ph.CO]

    Article  ADS  Google Scholar 

  245. Lombriser, L., Lima, N.A.: Phys. Lett. B 765, 382 (2017). https://doi.org/10.1016/j.physletb.2016.12.048. arXiv:1602.07670 [astro-ph.CO]

    Article  ADS  Google Scholar 

  246. Sakstein, J., Jain, B.: (2017). arXiv:1710.05893 [astro-ph.CO]

  247. Creminelli, P., Vernizzi, F.: (2017). arXiv:1710.05877 [astro-ph.CO]

  248. Ezquiaga, J.M., Zumalacárregui, M.: (2017). arXiv:1710.05901 [astro-ph.CO]

  249. Baker, T., Bellini, E., Ferreira, P.G., Lagos, M., Noller, J., Sawicki, I.: (2017). arXiv:1710.06394 [astro-ph.CO]

  250. Arai, S., Nishizawa, A.: (2017). arXiv:1711.03776 [gr-qc]

  251. Crisostomi, M., Koyama, K.: (2017). arXiv:1711.06661 [astro-ph.CO]

  252. Langlois, D., Saito, R., Yamauchi, D., Noui, K.: (2017). arXiv:1711.07403 [gr-qc]

  253. Dima, A., Vernizzi, F.: (2017). arXiv:1712.04731 [gr-qc]

  254. Visinelli, L., Bolis, N., Vagnozzi, S.: (2017). arXiv:1711.06628 [gr-qc]

  255. Nojiri, S., Odintsov, S.D.: (2017). arXiv:1711.00492 [astro-ph.CO]

  256. Lee, S.: (2017). arXiv:1711.09038 [gr-qc]

  257. Heisenberg, L., Tsujikawa, S.: (2017). arXiv:1711.09430 [gr-qc]

  258. Berti, E., Gair, J., Sesana, A.: Phys. Rev. D 84, 101501 (2011). https://doi.org/10.1103/PhysRevD.84.101501. arXiv:1107.3528 [gr-qc]

    Article  ADS  Google Scholar 

  259. Barausse, E., Yunes, N., Chamberlain, K.: Phys. Rev. Lett. 116(24), 241104 (2016). https://doi.org/10.1103/PhysRevLett.116.241104. arXiv:1603.04075 [gr-qc]

    Article  ADS  Google Scholar 

  260. Chamberlain, K., Yunes, N.: Phys. Rev. D 96(8), 084039 (2017). https://doi.org/10.1103/PhysRevD.96.084039. arXiv:1704.08268 [gr-qc]

    Article  ADS  Google Scholar 

  261. Samajdar, A., Arun, K.G.: (2017). arXiv:1708.00671 [gr-qc]

  262. Berti, E., Sesana, A., Barausse, E., Cardoso, V., Belczynski, K.: Phys. Rev. Lett. 117(10), 101102 (2016). https://doi.org/10.1103/PhysRevLett.117.101102. arXiv:1605.09286 [gr-qc]

    Article  ADS  Google Scholar 

  263. Okounkova, M., Stein, L.C., Scheel, M.A., Hemberger, D.A.: Phys. Rev. D 96(4), 044020 (2017). https://doi.org/10.1103/PhysRevD.96.044020. arXiv:1705.07924 [gr-qc]

    Article  ADS  Google Scholar 

  264. Papallo, G., Reall, H.S.: Phys. Rev. D 96(4), 044019 (2017). https://doi.org/10.1103/PhysRevD.96.044019. arXiv:1705.04370 [gr-qc]

    Article  ADS  Google Scholar 

  265. Cayuso, J., Ortiz, N., Lehner, L.: (2017). arXiv:1706.07421 [gr-qc]

  266. Lanahan-Tremblay, N., Faraoni, V.: Class. Quantum Gravity 24, 5667 (2007). https://doi.org/10.1088/0264-9381/24/22/024. arXiv:0709.4414 [gr-qc]

    Article  ADS  Google Scholar 

  267. Paschalidis, V., Halataei, S.M.H., Shapiro, S.L., Sawicki, I.: Class. Quantum Gravity 28, 085006 (2011). https://doi.org/10.1088/0264-9381/28/8/085006. arXiv:1103.0984 [gr-qc]

    Article  ADS  Google Scholar 

  268. Salgado, M., Martinez-del Rio, D., Alcubierre, M., Nunez, D.: Phys. Rev. D 77, 104010 (2008). https://doi.org/10.1103/PhysRevD.77.104010. arXiv:0801.2372 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  269. Sotiriou, T.P., Zhou, S.Y.: Phys. Rev. Lett. 112, 251102 (2014). https://doi.org/10.1103/PhysRevLett.112.251102. arXiv:1312.3622 [gr-qc]

    Article  ADS  Google Scholar 

  270. Herdeiro, C.A.R., Radu, E.: Phys. Rev. Lett. 112, 221101 (2014). https://doi.org/10.1103/PhysRevLett.112.221101. arXiv:1403.2757 [gr-qc]

    Article  ADS  Google Scholar 

  271. Herdeiro, C., Radu, E.: Class. Quantum Gravity 32(14), 144001 (2015). https://doi.org/10.1088/0264-9381/32/14/144001. arXiv:1501.04319 [gr-qc]

    Article  ADS  Google Scholar 

  272. Herdeiro, C.A.R., Radu, E.: Int. J. Mod. Phys. D 24(09), 1542014 (2015). https://doi.org/10.1142/S0218271815420146. arXiv:1504.08209 [gr-qc]

    Article  ADS  Google Scholar 

  273. Ganchev, B., Santos, J.E.: (2017). arXiv:1711.08464 [gr-qc]

  274. Degollado, J.C., Herdeiro, C.A.R., Radu, E.: Gen. Relativ. Quantum Cosmol. (2018). arXiv:1802.07266 [gr-qc]

  275. Heusler, M.: Class. Quantum Gravity 12, 2021 (1995). https://doi.org/10.1088/0264-9381/12/8/017. arXiv:gr-qc/9503053 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  276. Sotiriou, T.P., Faraoni, V.: Phys. Rev. Lett. 108, 081103 (2012). https://doi.org/10.1103/PhysRevLett.108.081103. arXiv:1109.6324 [gr-qc]

    Article  ADS  Google Scholar 

  277. Yunes, N., Pani, P., Cardoso, V.: Phys. Rev. D 85, 102003 (2012). https://doi.org/10.1103/PhysRevD.85.102003. arXiv:1112.3351 [gr-qc]

    Article  ADS  Google Scholar 

  278. Doneva, D.D., Yazadjiev, S.S.: (2017). arXiv:1711.01187 [gr-qc]

  279. Brito, R., Cardoso, V., Pani, P.: Lect. Notes Phys. 906, 1 (2015). https://doi.org/10.1007/978-3-319-19000-6. arXiv:1501.06570 [gr-qc]

    Article  Google Scholar 

  280. Cardoso, V., Chakrabarti, S., Pani, P., Berti, E., Gualtieri, L.: Phys. Rev. Lett. 107, 241101 (2011). https://doi.org/10.1103/PhysRevLett.107.241101. arXiv:1109.6021 [gr-qc]

    Article  ADS  Google Scholar 

  281. Zimmerman, P.: Phys. Rev. D 92(6), 064051 (2015). https://doi.org/10.1103/PhysRevD.92.064051. arXiv:1507.04076 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  282. Fujita, R., Cardoso, V.: Phys. Rev. D 95(4), 044016 (2017). https://doi.org/10.1103/PhysRevD.95.044016. arXiv:1612.00978 [gr-qc]

    Article  ADS  Google Scholar 

  283. Cardoso, V., Carucci, I.P., Pani, P., Sotiriou, T.P.: Phys. Rev. D 88, 044056 (2013). https://doi.org/10.1103/PhysRevD.88.044056. arXiv:1305.6936 [gr-qc]

    Article  ADS  Google Scholar 

  284. Cardoso, V., Carucci, I.P., Pani, P., Sotiriou, T.P.: Phys. Rev. Lett. 111, 111101 (2013). https://doi.org/10.1103/PhysRevLett.111.111101. arXiv:1308.6587 [gr-qc]

    Article  ADS  Google Scholar 

  285. Baumgarte, T.W., Shapiro, S.L.: Numerical Relativity: Solving Einstein’s Equations on the Computer. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9781139193344

    Book  MATH  Google Scholar 

  286. Salgado, M.: Class. Quantum Gravity 23, 4719 (2006). https://doi.org/10.1088/0264-9381/23/14/010. arXiv:gr-qc/0509001 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  287. Berti, E., Cardoso, V., Gualtieri, L., Horbatsch, M., Sperhake, U.: Phys. Rev. D 87(12), 124020 (2013). https://doi.org/10.1103/PhysRevD.87.124020. arXiv:1304.2836 [gr-qc]

    Article  ADS  Google Scholar 

  288. Healy, J., Bode, T., Haas, R., Pazos, E., Laguna, P., Shoemaker, D.M., Yunes, N.: Class. Quantum Gravity 29, 232002 (2012). https://doi.org/10.1088/0264-9381/29/23/232002. arXiv:1112.3928 [gr-qc]

    Article  ADS  Google Scholar 

  289. Sahni, V., Wang, L.M.: Phys. Rev. D 62, 103517 (2000). https://doi.org/10.1103/PhysRevD.62.103517. arXiv:astro-ph/9910097 [astro-ph]

    Article  ADS  Google Scholar 

  290. Hu, W., Barkana, R., Gruzinov, A.: Phys. Rev. Lett. 85, 1158 (2000). https://doi.org/10.1103/PhysRevLett.85.1158. arXiv:astro-ph/0003365 [astro-ph]

    Article  ADS  Google Scholar 

  291. Macedo, C.F.B., Pani, P., Cardoso, V., Crispino, L.C.B.: Astrophys. J. 774, 48 (2013). https://doi.org/10.1088/0004-637X/774/1/48. arXiv:1302.2646 [gr-qc]

    Article  ADS  Google Scholar 

  292. Nordtvedt, K.: Phys. Rev. 169, 1014 (1968). https://doi.org/10.1103/PhysRev.169.1014

    Article  ADS  Google Scholar 

  293. Roll, P.G., Krotkov, R., Dicke, R.H.: Ann. Phys. 26, 442 (1964). https://doi.org/10.1016/0003-4916(64)90259-3

    Article  ADS  Google Scholar 

  294. Shibata, M., Taniguchi, K., Okawa, H., Buonanno, A.: Phys. Rev. D 89(8), 084005 (2014). https://doi.org/10.1103/PhysRevD.89.084005. arXiv:1310.0627 [gr-qc]

    Article  ADS  Google Scholar 

  295. Silva, H.O., Macedo, C.F.B., Berti, E., Crispino, L.C.B.: Class. Quantum Gravity 32, 145008 (2015). https://doi.org/10.1088/0264-9381/32/14/145008. arXiv:1411.6286 [gr-qc]

    Article  ADS  Google Scholar 

  296. Barausse, E., Palenzuela, C., Ponce, M., Lehner, L.: Phys. Rev. D 87, 081506 (2013). https://doi.org/10.1103/PhysRevD.87.081506. arXiv:1212.5053 [gr-qc]

    Article  ADS  Google Scholar 

  297. Palenzuela, C., Barausse, E., Ponce, M., Lehner, L.: Phys. Rev. D 89(4), 044024 (2014). https://doi.org/10.1103/PhysRevD.89.044024. arXiv:1310.4481 [gr-qc]

    Article  ADS  Google Scholar 

  298. Sennett, N., Buonanno, A.: Phys. Rev. D 93(12), 124004 (2016). https://doi.org/10.1103/PhysRevD.93.124004. arXiv:1603.03300 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  299. Mendes, R.F.P., Ortiz, N.: Phys. Rev. D 93(12), 124035 (2016). https://doi.org/10.1103/PhysRevD.93.124035. arXiv:1604.04175 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  300. Palenzuela, C., Liebling, S.L.: Phys. Rev. D 93(4), 044009 (2016). https://doi.org/10.1103/PhysRevD.93.044009. arXiv:1510.03471 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  301. Ponce, M., Palenzuela, C., Barausse, E., Lehner, L.: Phys. Rev. D 91(8), 084038 (2015). https://doi.org/10.1103/PhysRevD.91.084038. arXiv:1410.0638 [gr-qc]

    Article  ADS  Google Scholar 

  302. Sagunski, L., Zhang, J., Johnson, M.C., Lehner, L., Sakellariadou, M., Liebling, S.L., Palenzuela, C., Neilsen, D.: (2017). arXiv:1709.06634 [gr-qc]

  303. Jai-akson, P., Chatrabhuti, A., Evnin, O., Lehner, L.: Phys. Rev. D 96(4), 044031 (2017). https://doi.org/10.1103/PhysRevD.96.044031. arXiv:1706.06519 [gr-qc]

    Article  ADS  Google Scholar 

  304. Buonanno, A., Kidder, L.E., Lehner, L.: Phys. Rev. D 77, 026004 (2008). https://doi.org/10.1103/PhysRevD.77.026004. arXiv:0709.3839 [astro-ph]

    Article  ADS  Google Scholar 

  305. Hirschmann, E.W., Lehner, L., Liebling, S.L., Palenzuela, C.: (2017). arXiv:1706.09875 [gr-qc]

  306. Israel, W.: Ann. Phys. 100, 310 (1976). https://doi.org/10.1016/0003-4916(76)90064-6

    Article  ADS  Google Scholar 

  307. Israel, W., Stewart, J.M.: Ann. Phys. 118, 341 (1979). https://doi.org/10.1016/0003-4916(79)90130-1

    Article  ADS  Google Scholar 

  308. Endlich, S., Gorbenko, V., Huang, J., Senatore, L.: JHEP 09, 122 (2017). https://doi.org/10.1007/JHEP09(2017)122. arXiv:1704.01590 [gr-qc]

    Article  ADS  Google Scholar 

  309. Julié, F.L.: (2017). arXiv:1711.10769 [gr-qc]

  310. Glampedakis, K., Pappas, G., Silva, H.O., Berti, E.: Phys. Rev. D 96(6), 064054 (2017). https://doi.org/10.1103/PhysRevD.96.064054. arXiv:1706.07658 [gr-qc]

    Article  ADS  Google Scholar 

  311. Tattersall, O.J., Ferreira, P.G., Lagos, M.: (2017). arXiv:1711.01992 [gr-qc]

  312. Teukolsky, S.A.: Astrophys. J. 185, 635 (1973)

    Article  ADS  Google Scholar 

  313. Mino, Y., Sasaki, M., Shibata, M., Tagoshi, H., Tanaka, T.: Prog. Theor. Phys. Suppl. 128, 1 (1997). https://doi.org/10.1143/PTPS.128.1. arXiv:gr-qc/9712057 [gr-qc]

    Article  ADS  Google Scholar 

  314. Hughes, S.A.: Phys. Rev. D 61(8), 084004 (2000). https://doi.org/10.1103/PhysRevD.61.084004. Erratum: Phys. Rev. D90, no. 10, 109904 (2014). arXiv:gr-qc/9910091 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  315. Sasaki, M., Tagoshi, H.: Living Rev. Rel. 6, 6 (2003). https://doi.org/10.12942/lrr-2003-6. arXiv:gr-qc/0306120 [gr-qc]

    Article  Google Scholar 

  316. Krause, D., Kloor, H.T., Fischbach, E.: Phys. Rev. D 49, 6892 (1994). https://doi.org/10.1103/PhysRevD.49.6892

    Article  ADS  Google Scholar 

  317. Perivolaropoulos, L.: Phys. Rev. D 81, 047501 (2010). https://doi.org/10.1103/PhysRevD.81.047501. arXiv:0911.3401 [gr-qc]

    Article  ADS  Google Scholar 

  318. Hawking, S.W.: Commun. Math. Phys. 25, 167 (1972). https://doi.org/10.1007/BF01877518

    Article  ADS  Google Scholar 

Download references

Acknowledgements

E.B. was supported by NSF Grants Nos. PHY-1607130 and AST-1716715. N.Y. acknowledges support through the NSF CAREER Grant PHY-1250636 and NASA Grants NNX16AB98G and 80NSSC17M0041.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emanuele Berti.

Additional information

This article belongs to the Topical Collection: Testing the Kerr spacetime with gravitational-wave and electromagnetic observations.

Appendices

A: Derivation of the black hole scalar charge in decoupled dynamical Gauss–Bonnet gravity

The goal of this appendix is to derive the scalar charge in D\(^2\)GB gravity for a stationary black hole, valid to arbitrary order in spin. We closely follow the calculation in dCS gravity in [181]. The scalar charge \(\mu \) can be read off from the 1 / r coefficient in the asymptotic behavior of the scalar field at spatial infinity as \(\phi = \mu \, M/r + {\mathcal {O}}(M^2/r^2)\), where M is the black hole mass. Since we work within the small-coupling approximation, we can take the background metric to be Kerr, and the above equation becomes

$$\begin{aligned} \frac{\partial }{\partial {{\tilde{r}}}} \left( \varDelta \frac{\partial \phi }{\partial {{\tilde{r}}}} \right) + \frac{1}{\sin \theta } \frac{\partial }{\partial \theta } \left( \sin \theta \frac{\partial \phi }{\partial \theta } \right) =T\,, \end{aligned}$$
(23)

where we work in the rescaled radial coordinate \({{\tilde{r}}} \equiv r/M\) and \(\varDelta \equiv {{\tilde{r}}}^2 - 2M {{\tilde{r}}} + \chi ^2\) with \(\chi \) representing the dimensionless Kerr parameter, and

$$\begin{aligned} T\equiv & {} - 48 \frac{\alpha _\mathrm{GB}\, M^2}{\Sigma ^5} \left[ {{\tilde{r}}}^6 -15 {{\tilde{r}}}^4 \chi ^2 \cos ^2 \theta +15 {{\tilde{r}}}^2 \chi ^4 \cos ^4 \theta - \chi ^6 \cos ^6 \theta \right] \,, \end{aligned}$$
(24)

with \(\Sigma \equiv {{\tilde{r}}}^2 + \chi ^2 \cos ^2\theta \).

In order to solve the above field equation using Green’s functions, we decompose the scalar field \(\phi \) and the source term T as [312]

$$\begin{aligned} \phi= & {} \frac{\alpha _\mathrm{GB}}{M^2} \sum _{\ell } R_{\ell }({{\tilde{r}}})\, S_{\ell }(\theta )\,, \end{aligned}$$
(25)
$$\begin{aligned} T= & {} \frac{\alpha _\mathrm{GB}}{M^2} \sum _{\ell } T_{\ell }({{\tilde{r}}})\, S_{\ell }(\theta )\,, \end{aligned}$$
(26)

where \(S_\ell (\theta )\) is normalized as

$$\begin{aligned} 2 \pi \int _0^\pi S_\ell ^2\, \sin \theta \, d\theta = 1\,. \end{aligned}$$
(27)

Inverting Eq. (26), one obtains

$$\begin{aligned} T_\ell = 2 \pi \frac{M^2}{\alpha _\mathrm{GB}} \int _{0}^{\pi } T\, S_{\ell }\, \sin \theta \, d\theta \,. \end{aligned}$$
(28)

Eq. (23) can be split into radial and angular parts as

$$\begin{aligned} \frac{\partial }{\partial {{\tilde{r}}}} \left( \varDelta \frac{\partial R_{\ell }}{\partial {{\tilde{r}}}} \right) -\ell (\ell +1) R_{\ell }= & {} T_{\ell }\,, \end{aligned}$$
(29)
$$\begin{aligned} \frac{1}{\sin \theta } \frac{\partial }{\partial \theta } \left( \sin \theta \frac{\partial S_{\ell }}{\partial \theta } \right) + \ell (\ell +1) S_{\ell }= & {} 0\,. \end{aligned}$$
(30)

The solution to the second equation is nothing but the \(m=0\) mode of the spherical harmonics \(S_{\ell } = Y_{\ell 0}\).

Let us first derive the scalar monopole charge by concentrating on the \(\ell = 0\) mode. The solution to Eq. (29) consists of homogeneous and particular solutions. Let us first study the former. Modulo overall integration constants, homogeneous solutions for the \(\ell = 0\) mode of Eq. (29) are given by

$$\begin{aligned} R_0^{(\mathrm {hom},1)} ({{\tilde{r}}})= & {} 1, \end{aligned}$$
(31)
$$\begin{aligned} R_0^{(\mathrm {hom},2)} ({{\tilde{r}}})= & {} \frac{1}{2 \sqrt{1-\chi ^2}} \log \left( \frac{{{\tilde{r}}}-1-\sqrt{1-\chi ^2}}{{{\tilde{r}}}-1 + \sqrt{1-\chi ^2}}\right) . \end{aligned}$$
(32)

The asymptotic behavior of \(R_0^{(\mathrm {hom},2)}\) at spatial infinity and at the Kerr horizon \({\tilde{r}}_\mathrm {hor} \equiv 1 + \sqrt{1-\chi ^2}\) is given by

$$\begin{aligned} R_0^{(\mathrm {hom},2,\mathrm {inf})} ({{\tilde{r}}})= & {} \frac{1}{{\tilde{r}}} + {\mathcal {O}}\left( \frac{1}{{\tilde{r}}^{2}} \right) , \end{aligned}$$
(33)
$$\begin{aligned} R_0^{(\mathrm {hom},2,\mathrm {hor})} ({{\tilde{r}}})= & {} \frac{1}{2 \sqrt{1-\chi ^2}} \log \left( \frac{{\tilde{r}}-{\tilde{r}}_\mathrm {hor}}{2\sqrt{1-\chi ^2}} \right) + {\mathcal {O}}[({\tilde{r}}-{\tilde{r}}_\mathrm {hor})]. \end{aligned}$$
(34)

Since EdGB gravity is a shift-symmetric theory, one can set \(\phi (\infty ) = 0\) without loss of generality (namely no contribution from \(R_0^{(\mathrm {hom},1)}\)). Imposing further regularity at the horizon, one finds that the homogeneous solution is absent.

Let us now turn our attention to the particular solution \(R_0^{(\mathrm {p})} ({{\tilde{r}}})\). Such a solution is obtained by using the Green’s function constructed from the two independent homogeneous solutions above [313,314,315]:

$$\begin{aligned} R_0^{(\mathrm {p})} ({{\tilde{r}}})= & {} \frac{1}{\varDelta \; W} \left[ R_0^{(\mathrm {hom},2)} ({{\tilde{r}}}) \int _{{{\tilde{r}}}_\mathrm {hor}}^{{{\tilde{r}}}} T_0({{\tilde{r}}}')\, R_0^{(\mathrm {hom},1)} ({{\tilde{r}}}')\, d{{\tilde{r}}}' \right. \nonumber \\&\left. - R_0^{(\mathrm {hom},1)} ({{\tilde{r}}}) \int _\infty ^{{{\tilde{r}}}} T_0 ({{\tilde{r}}}') \,R_0^{(\mathrm {hom},2)} ({{\tilde{r}}}') \, d{{\tilde{r}}}' \right] \,, \end{aligned}$$
(35)

where W is the Wronskian:

$$\begin{aligned} W \equiv R_0^{(\mathrm {hom},1)}\, \frac{d}{d{{\tilde{r}}}} R_0^{(\mathrm {hom},2)} - R_0^{(\mathrm {hom},2)}\, \frac{d}{d{{\tilde{r}}}} R_0^{(\mathrm {hom},1)} = \frac{1}{\varDelta }\,. \end{aligned}$$
(36)

The lower bound of the integral in Eq. (35) is determined such that the solution is regular at the horizon and satisfies \(\phi (\infty ) = 0\). For the purpose of studying the leading asymptotic behavior at infinity, one only needs to consider the first term in Eq. (35).

Combining Eqs. (25) and (35) and performing the integral in the latter, one reads off the monopole scalar charge as

$$\begin{aligned} \mu ^\mathrm{GB}= & {} \frac{\alpha _\mathrm{GB}}{M^2} \frac{Y_{00}}{\varDelta \; W} \int _{{{\tilde{r}}}_\mathrm {hor}}^\infty T_0({{\tilde{r}}}')\, R_0^{(\mathrm {hom},1)} ({{\tilde{r}}}')\, d{{\tilde{r}}}' \nonumber \\= & {} 4 \frac{\alpha _\mathrm{GB}}{M^2} \frac{\sqrt{1-\chi ^2}-1 + \chi ^2}{\chi ^2}\,. \end{aligned}$$
(37)

We checked that when we expand the above scalar charge around \(\chi = 0\), the expression agrees with that in [81] to \({\mathcal {O}}(\chi ^8)\).

In a similar manner, one can calculate the quadrupolar scalar charge \(q^\mathrm{GB}\) by extracting the coefficient of \(P_2(\cos \theta ) M^3/r^3\) in the asymptotic behavior of the scalar field at spatial infinity. One finds

$$\begin{aligned} q^\mathrm{GB}= & {} -\frac{4}{3 \chi ^3} \frac{\alpha }{M^2} \left\{ \chi \left[ 2 \chi ^2 \left( \chi ^2+\sqrt{1-\chi ^2}-2\right) -5 \sqrt{1-\chi ^2}+8\right] \right. \nonumber \\&\left. \quad +6 \tan ^{-1}\left( \frac{\sqrt{1-\chi ^2}-1}{\chi }\right) \right\} . \end{aligned}$$
(38)

Again, we checked that an expansion of this expression about \(\chi =0\) agrees with that in [81] to \({\mathcal {O}}(\chi ^8)\).

B: A “dynamical no-hair theorem” for black holes in scalar–tensor gravity

The goal of this appendix is to show and explain how black hole binaries do not develop scalar hair upon dynamical evolution. That is, we will explain how the dynamics of a black hole binary system in Bergmann–Wagoner theory with vanishing potential in asymptotically flat spacetimes are the same as in GR, focusing first on the inspiral phase of coalescence.

In the inspiral phase of the binary’s evolution it is appropriate to use the PN approximation, an expansion in powers of \(v/c \sim (Gm/rc^2)^{1/2}\). It is convenient to introduce a rescaled version of the scalar field \(\phi \): \(\varphi \equiv \phi /\phi _0\), where \(\phi _0\) is the value of \(\phi \) at infinity (assumed to be constant). Mirshekari and Will [191] found the equations of motion for the bodies up to 2.5PN order. Schematically, the relative acceleration \({\mathbf {a}} \equiv {\mathbf {a}}_1-{\mathbf {a}}_2\) takes the form

$$\begin{aligned} a^i =&-\frac{G\alpha m}{r^2}{\hat{n}}^i+\frac{G\alpha m}{r^2}(A_\text {PN}{\hat{n}}^i+B_\text {PN}{\dot{r}}v^i)+\frac{8}{5}\eta \frac{(G\alpha m)^2}{r^3}(A_\text {1.5PN}{\dot{r}}{\hat{n}}^i-B_\text {1.5PN}v^i) \nonumber \\&{}+\frac{G\alpha m}{r^2}(A_\text {2PN}{\hat{n}}^i+B_\text {2PN}{\dot{r}}v^i) \, , \end{aligned}$$
(39)

where \(m \equiv m_1+m_2\), \(\eta \equiv m_1m_2/m^2\), r is the orbital separation, \({\hat{\mathbf {n}}}\) is a unit vector pointing from body 2 to body 1, and \({\mathbf {v}} \equiv {\mathbf {v}}_1-{\mathbf {v}}_2\) is the relative velocity. The coefficients \(A_\text {PN}\), \(B_\text {PN}\), \(A_\text {1.5PN}\), \(B_\text {1.5PN}\), \(A_\text {2PN}\), and \(B_\text {2PN}\) (which are typically time-dependent) are given in [191]. The symbol G represents the combination \((4+2\omega _0)/[\phi _0(3+2\omega _0)]\) [with \(\omega _0 \equiv \omega (\phi _0)\)], which appears in the metric component \(g_{00}\) in the same manner as the gravitational constant G in GR. However, the coupling in the Newtonian piece of the equations of motion is not simply G but \(G\alpha \), where

$$\begin{aligned} \alpha \equiv \frac{3+2\omega _0}{4+2\omega _0}+\frac{(1-2s_1)(1-2s_2)}{4+2\omega _0} \, \end{aligned}$$
(40)

and \(s_i\) (\(i=1\,,2\)) are the sensitivities of the two objects:

$$\begin{aligned} s_A \equiv \left( \frac{d\ln M_{\scriptscriptstyle A}(\phi )}{d\ln \phi }\right) _{\phi =\phi _0} \,. \end{aligned}$$
(41)

Higher-order derivatives of \(M_{\scriptscriptstyle A}(\phi )\) are used to define higher-order sensitivities, e.g. \(s'_{\scriptscriptstyle A}\) and \(s''_{\scriptscriptstyle A}\). Note that in GR radiation reaction begins at 2.5PN order (quadrupole radiation), while in scalar–tensor gravity radiation reaction begins at 1.5PN order, due to the presence of dipole radiation.

All deviations from GR can be characterized using a fairly small number of parameters, all combinations of \(\phi _0\), the Taylor coefficients of \(\omega (\phi )\), and the sensitivities \(s_A\), \(s_A'\), and \(s_A''\). If one object in the system is a black hole (with the other being a neutron star), the motion of the system is indistinguishable from GR up to 1PN order. All deviations beyond 1PN order depend only on a single parameter, which is a function of \(\omega _0\) and the neutron star sensitivity. Unfortunately, this parameter alone (if measured) could not be used to distinguish between Brans–Dicke theory and a more general scalar–tensor theory.

Going beyond the equations of motion, the next step is the calculation of gravitational radiation. The tensor part of the radiation, encoded in \({\tilde{h}}^{ij}\), was computed up to 2PN order by Lang [192]. All deviations depend on the same (small) number of parameters that characterize the equations of motion. For black hole-neutron star systems, the waveform is indistinguishable from GR up to 1PN order, and deviations at higher order depend only on the single parameter described above. For binary black hole systems, the waveform is completely indistinguishable from GR. Scalar radiation has recently been computed by Lang [193] using a very similar procedure. The dipole moment generates the lowest-order scalar waves, which are of \(-0.5\)PN order:

$$\begin{aligned} \varphi = \frac{4G\mu \alpha ^{1/2}}{R}\zeta {\mathcal {S}}_-({\hat{\mathbf {N}}}\cdot {\mathbf {v}}), \end{aligned}$$
(42)

where \(\mu \equiv m_1 m_2/m\) is the reduced mass, \({\hat{\mathbf {N}}} \equiv {\mathbf {x}}/R\) is the direction from the source to the detector, \(\zeta \equiv 1/(4+2\omega _0)\), and

$$\begin{aligned} {\mathcal {S}}_- \equiv \alpha ^{-1/2}(s_2-s_1). \end{aligned}$$
(43)

Because computing the radiation up to 2PN order requires knowledge of the monopole moment to 3PN order (relative to itself) and knowledge of the dipole moment to 2.5PN order, Lang [193] computed the scalar waveform only to 1.5PN order. The 1.5PN waveform is described by the same set of parameters that describes the 2.5PN equations of motion and the 2PN tensor waveform. Again, the scalar waveform vanishes for binary black hole systems (so that the GW signal is indistinguishable from GR).

Lang [193] used the tensor and scalar waveforms to compute the total energy flux carried off to infinity to 1PN order. A derivation of the quadrupole-order flux in tensor-multiscalar theories (that agrees with Lang’s results in the single-scalar limit) can be found in [12]. A similar calculation for compact binaries in the massive Brans–Dicke theory was performed by Alsing et al. [52] (see also [316, 317]). In the notation used above, and correcting a mistake in [52], they found that the lowest-order flux is given by

$$\begin{aligned} {\dot{E}} = \frac{4}{3}\frac{\mu \eta }{r}\left( \frac{G\alpha m}{r}\right) ^3\zeta {\mathcal {S}}_-^2\left[ \frac{\omega ^2-m_s^2}{\omega ^2}\right] ^{3/2}\varTheta (\omega -m_s), \end{aligned}$$
(44)

where \(\omega \) is the binary’s orbital frequency, \(m_s\) is the mass of the scalar field, and \(\varTheta \) is the Heaviside function (i.e., in massive Brans–Dicke theory, scalar dipole radiation is emitted only when \(\omega > m_s\)).

The emitted radiation has very special features for a binary black hole system: from Eq. (40) and (42) with \(s_1=s_2=1/2\) we see that the dominant terms are identical to the equations of motion in GR, except for an unobservable mass rescaling. This result is a generalization to binary systems of “no-scalar-hair” theorems that apply to single black holes [318]. For generic mass ratio, Mirshekari and Will proved this “generalized no-hair theorem” up to 2.5PN order, but they conjectured that it should hold at all PN orders. Indeed, Ref. [277] has shown that the equations of motion are the same as in GR at any PN order if one considers an extreme mass-ratio system and works to lowest order in the mass ratio, and the conjecture is also supported by numerical relativity studies [287, 288]. This “generalized no-hair theorem” for binary black holes depends on some crucial assumptions: vanishing scalar potential, asymptotically constant value of the scalar field, and vanishing matter content. If any one of these assumptions breaks down, the black hole binary’s behavior will differ from GR.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berti, E., Yagi, K. & Yunes, N. Extreme gravity tests with gravitational waves from compact binary coalescences: (I) inspiral–merger. Gen Relativ Gravit 50, 46 (2018). https://doi.org/10.1007/s10714-018-2362-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-018-2362-8

Keywords

Navigation