Skip to main content
Log in

Pulsation of black holes

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

The Hawking–Penrose singularity theorem states that a singularity forms inside a black hole in general relativity. To remove this singularity one must resort to a more fundamental theory. Using a corrected dynamical equation arising in loop quantum cosmology and braneworld models, we study the gravitational collapse of a perfect fluid sphere with a rather general equation of state. In the frame of an observer comoving with this fluid, the sphere pulsates between a maximum and a minimum size, avoiding the singularity. The exterior geometry is also constructed. There are usually an outer and an inner apparent horizon, resembling the Reissner–Nordström situation. For a distant observer the horizon crossing occurs in an infinite time and the pulsations of the black hole quantum “beating heart” are completely unobservable. However, it may be observable if the black hole is not spherical symmetric and radiates gravitational wave due to the quadrupole moment, if any.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Hawking, S.W., Penrose, R.: Proc. R. Soc. Lond. A 314, 529 (1970)

    Article  ADS  Google Scholar 

  2. Schwarz, J.H.: In: Freedman, W.L. (ed.) Measuring and Modeling the Universe. Proceedings, Pasadena, USA, November 17–22, 2002. Cambridge University Press, Cambridge, pp. 53–66 (2004) arXiv:astro-ph/0304507

  3. Ashtekar, A., Lewandowski, J.: Class. Quantum Grav. 21, R53 (2004)

    Article  ADS  Google Scholar 

  4. Oppenheimer, J.R., Snyder, H.: Phys. Rev. 56, 455 (1939)

    Article  ADS  Google Scholar 

  5. Ashtekar, A., Fairhurst, S., Willis, J.L.: Class. Quantum Grav. 20, 1031 (2003)

    Article  ADS  Google Scholar 

  6. Boehmer, C.G., Vandersloot, K.: Phys. Rev. 76, 104030 (2007). arXiv:0709.2129

    MathSciNet  Google Scholar 

  7. Modesto, L.: Class. Quantum Grav. 23, 5587 (2006). arXiv:gr-qc/0509078

    Article  ADS  MathSciNet  Google Scholar 

  8. Corichi, A., Singh, P.: Class. Quantum Grav. 33, 055006 (2016). arXiv:1506.08015 [gr-qc]

    Article  ADS  Google Scholar 

  9. Olmedo, J., Saini, S., Singh, P.: arXiv:1707.07333 [gr-qc]

  10. Campiglia, M., Gambini, R., Pullin, J.: Class. Quantum Grav. 24, 3649 (2007). arXiv:gr-qc/0703135

    Article  ADS  Google Scholar 

  11. Bojowald, M., Goswami, R., Maartens, R., Singh, P.: Phys. Rev. Lett. 95, 091302 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  12. Modesto, L.: Adv. High Energy Phys. 2008, 459290 (2008)

    Article  MathSciNet  Google Scholar 

  13. Chiou, D.W.: Phys. Rev. 78, 064040 (2008). arXiv:gr-qc/0611043

    Google Scholar 

  14. Bojowald, M., Harada, T., Tibrewala, R.: Phys. Rev. 78, 064057 (2008)

    MathSciNet  Google Scholar 

  15. Rodolfo, G., Pullin, J.: Phys. Rev. Lett. 101, 161301 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  16. Tippett, B.K., Husain, V.: Phys. Rev. D 84, 104031 (2011)

    Article  ADS  Google Scholar 

  17. Modesto, L.: Phys. Rev. D 70, 124009 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  18. Ziprick, J., Kunstatter, G.: Phys. Rev. D 80, 024032 (2009)

    Article  ADS  Google Scholar 

  19. Peltola, A., Kunstatter, G.: Phys. Rev. D 80, 044031 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  20. Bambi, C., Malafarina, D., Modesto, L.: Phys. Rev. D 88, 044009 (2013)

    Article  ADS  Google Scholar 

  21. Liu, Y., Malafarina, D., Modesto, L., Bambi, C.: Phys. Rev. D 90, 044040 (2014)

    Article  ADS  Google Scholar 

  22. Malafarina, D.: Universe 3, 48 (2017)

    Article  ADS  Google Scholar 

  23. Wald, R.M.: General Relativity. Chicago University Press, Chicago (1984)

    Book  MATH  Google Scholar 

  24. Hawking, S.W., Ellis, G.F.R.: The Large Scale Structure of Space-Time, p. 135. Cambridge University Press, Cambridge (1973)

    Book  MATH  Google Scholar 

  25. Vereshchagin, G.: JCAP 0407, 013 (2004). arXiv:gr-qc/0406108

    Article  ADS  Google Scholar 

  26. Singh, P., Vandersloot, K., Vereshchagin, G.: Phys. Rev. 74, 043510 (2006). arXiv:gr-qc/0606032

    ADS  Google Scholar 

  27. Ashtekar, A., Pawlowski, T., Singh, P., Vandersloot, K.: Phys. Rev. 75, 024035 (2007). arXiv:gr-qc/0612104

    ADS  MathSciNet  Google Scholar 

  28. Singh, P., Vidotto, F.: Phys. Rev. 83, 064027 (2011). arXiv:1012.1307 [gr-qc]

    Google Scholar 

  29. Dupuy, J.L., Singh, P.: Phys. Rev. 95, 023510 (2017). arXiv:1608.07772 [gr-qc]

    ADS  Google Scholar 

  30. Ashtekar, A., Pawlowski, T., Singh, P.: Phys. Rev. 74, 084003 (2006). arXiv:gr-qc/0607039

    MathSciNet  Google Scholar 

  31. Diener, P., Gupt, B., Singh, P.: Class. Quantum Grav. 31, 105015 (2014). arXiv:1402.6613 [gr-qc]

    Article  ADS  Google Scholar 

  32. Ashtekar, A., Pawlowski, T., Singh, P.: Phys. Rev. Lett. 96, 141301 (2006). arXiv:gr-qc/0602086

    Article  ADS  MathSciNet  Google Scholar 

  33. Wilson-Ewing, E.: JCAP 1303, 026 (2013). arXiv:1211.6269

    Article  ADS  MathSciNet  Google Scholar 

  34. Bojowald, M.: Quantum Cosmology. Springer, New York (2011)

    Book  MATH  Google Scholar 

  35. Shtanov, Y., Sahni, V.: Phys. Lett. B 557, 1 (2003). arXiv:gr-qc/0208047

    Article  ADS  Google Scholar 

  36. Seikel, M., Camenzind, M.: Phys. Rev. 79, 083531 (2009). arXiv:0811.4629 [astro-ph]

    Google Scholar 

  37. Brown, M.G., Freese, K., Kinney, W.H.: JCAP 0803, 002 (2008). arXiv:astro-ph/0405353

    Article  ADS  Google Scholar 

  38. Ashtekar, A., Conf, A.I.P.: Proc. 861, 3 (2006). arXiv:gr-qc/0605011

    Google Scholar 

  39. Olmo, G.J., Singh, P.: JCAP 0901, 030 (2009). arXiv:0806.2783 [gr-qc]

    Article  ADS  Google Scholar 

  40. Corichi, A., Montoya, E.: Phys. Rev. 84, 044021 (2011)

    ADS  Google Scholar 

  41. Diener, P., Gupt, B., Megevand, M., Singh, P.: Class. Quantum Grav. 31, 165006 (2014). arXiv:1406.1486 [hep-ph]

    Article  ADS  Google Scholar 

  42. Rovelli, C., Wilson-Ewing, E.: Phys. Rev. 90, 023538 (2014)

    ADS  Google Scholar 

  43. Weinberg, S.: Gravitation and Cosmology. Wiley, New York (1972)

    Google Scholar 

  44. Yu, R.Y., Wang, T.: Pramana 80, 349 (2013)

    Article  ADS  Google Scholar 

  45. Wang, T.: Class. Quantum Grav. 32, 195006 (2015)

    Article  ADS  Google Scholar 

  46. Misner, C.W., Thorne, K.S., Wheeler, J.A.: Gravitation. Freeman, San Francisco (1973)

    Google Scholar 

  47. Israel, W.: Nuovo Cimento B 44, 1 (1966)

    Article  ADS  Google Scholar 

  48. Israel, W.: Erratum 48, 463 (1967)

    Google Scholar 

  49. Poisson, E.: A Relativist’s Toolkit. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  50. Barceló, C., Carballo-Rubio, R., Garay, L.J.: Universe 2, 7 (2016)

    Article  ADS  Google Scholar 

  51. Kiselev, V.V.: Class. Quantum Grav. 20, 1187 (2003)

    Article  ADS  Google Scholar 

  52. Abedi, J., Arfaei, H.: JHEP 03, 135 (2016)

    Article  ADS  Google Scholar 

  53. Chen, P., Ong, Y.C., Yeom, D.-H.: Phys. Rep. 603, 1 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  54. Bardeen, J. M.: In: Conference Proceedings of GR5 Tbilisi. USSR, p. 174 (1968)

  55. Ayón-Beato, E., Garcia, A.: Phys. Lett. B 493, 149 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  56. Borde, A.: Phys. Rev. 50, 3392 (1994)

    Article  MathSciNet  Google Scholar 

  57. Borde, A.: Phys. Rev. 55, 7615 (1997)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank the referee for useful suggestions and for bringing several references to our attention. This work is partially supported by the Strategic Priority Research Program “Multi-wavelength Gravitational Wave Universe” of the CAS, Grant No. XDB23040100, and the NSFC under Grants 10973014, 11373020, 11465012, 11633004 and 11690024, and the Project of CAS, QYZDJ-SSW-SLH017. VF thanks the Natural Science and Engineering Research Council of Canada for partial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changjun Gao.

Appendices

Appendix A: From interior to exterior solution

Here we show how to obtain the exterior solution from the interior one using our “surface trick” in the context of general relativity.

The metric for a homogenous and isotropic fluid sphere is given by Eq. (1), where the scale factor a obeys Eq. (2). Following the procedure of Sect. 3, we rewrite Eq. (1) in the frame of the observer at infinity as

$$\begin{aligned} ds^2= & {} -F^2\left( 1-\frac{8\pi }{3}\rho x^2\right) d\bar{t}^2+x^2d\Omega _{(2)}^2\nonumber \\&+\left( 1-\frac{8\pi }{3}\rho x^2\right) ^{-1}dx^2, \end{aligned}$$
(69)

where the metric components must be understood as functions of \(\bar{t}\) and x.

At the surface \(r=r_0\) of the sphere (\(r_0\) is a constant, since r is a comoving coordinate [46]), we have

$$\begin{aligned} ds^2= & {} -\left[ 1-\frac{8\pi }{3}\rho \left( \frac{x}{r_0}\right) x^2\right] d\tilde{t}^2 +x^2d\Omega _{(2)}^2\nonumber \\&+\left[ 1-\frac{8\pi }{3}\rho \left( \frac{x}{r_0}\right) x^2\right] ^{-1}dx^2. \end{aligned}$$
(70)

The metric (70) also represents the exterior metric at the surface \(r=r_0\). Thus we can take this static spherically symmetric spacetime as the exterior solution of the fluid sphere. Similar to the proof in Sect. 4, we can show that the exterior geometry (70) matches continuously the interior one (1).

As an example, we consider the energy density

$$\begin{aligned} \rho =\lambda +\frac{\rho _m}{a^3}+\frac{\rho _r}{a^4}, \end{aligned}$$
(71)

with \(\lambda \) for the cosmological constant energy density, \({\rho _m}/{a^3}\) for the dust density, and \({\rho _r}/{a^4}\) for the radiation density. Substituting Eq. (71) with \(a=x/r_0\) into Eq. (70), one obtains

$$\begin{aligned} ds^2= & {} -\left( 1-\frac{2M}{x}-\frac{Q^2}{x^2} -\Lambda x^2\right) d\tilde{t}^2+x^2d\Omega _{(2)}^2\nonumber \\&+\left( 1-\frac{2M}{x}-\frac{Q^2}{x^2}-\Lambda x^2\right) ^{-1}dx^2, \end{aligned}$$
(72)

where

$$\begin{aligned} M\equiv \frac{4\pi }{3}\rho _m r_0^{3},\quad Q^2\equiv \frac{8\pi }{3}\rho _r r_0^{4},\quad \Lambda \equiv \frac{8\pi }{3}\lambda . \end{aligned}$$
(73)

The metric (72) is the Reissner–Nordström–de Sitter solution of the Einstein equations with the formal replacement \(Q\rightarrow i Q\). While M plays the role of a mass, \(Q^2\) also plays the role of the mass of radiation (not of electric charge) contained in a sphere. In fact, the thermal bath of radiation with density \(\rho _r/a^4\) has nothing to do with free electric charges and the analogy with Reissner–Nordström–de Sitter is purely formal and not complete (because of the opposite sign of the term in \(Q^2/x^2\)).

Appendix B: From exterior to interior solution

Here we show how to obtain the interior geometry from the exterior one in the context of general relativity. We focus on the static spherically symmetric spacetime

$$\begin{aligned} ds^2= & {} -\left[ 1-\frac{8\pi }{3} \rho \left( x\right) x^2\right] d\tilde{t}^2+x^2d\Omega _{(2)}^2 \nonumber \\&+\left[ 1-\frac{8\pi }{3}\rho \left( x\right) x^2\right] ^{-1}dx^2. \end{aligned}$$
(74)

We assume that the spacetime exterior to a perfect fluid sphere is given by Eq. (74). Then our task is to look for the interior solution starting from this exterior. The normalization of the tangent \(v^a\) to the trajectory described by the surface of the sphere in spacetime gives

$$\begin{aligned} \dot{x}^2=E^2-1+\frac{8\pi }{3}\rho x^2, \end{aligned}$$
(75)

with an overdot denoting differentiation with respect to the proper time t and where E is an integration constant. Equations (75) and (2) coincide provided that

$$\begin{aligned} x=a r_0\quad -k r_0^2=E^2-1, \end{aligned}$$
(76)

with \(r_0\) a constant. This coincidence motivates us to consider simply the homogenous and isotropic perfect fluid sphere as the interior solution. Then \(\rho \) plays the role of the energy density in the comoving frame. We have checked that the resulting interior solution does match the exterior solution continuously. In the following we consider, as an example, the Bardeen metric [54] as the exterior geometry outside a perfect fluid sphere.

The Bardeen line element describing a regular black hole is

$$\begin{aligned} ds^2= & {} -\left[ 1-\frac{2Mx^2}{ \left( x^2+q^2\right) ^{3/2}}\right] d\tilde{t}^2 +x^2d\Omega _{(2)}^2\nonumber \\&+\left[ 1-\frac{2Mx^2}{\left( x^2+q^2\right) ^{3/2}} \right] ^{-1}dx^2, \end{aligned}$$
(77)

where M is the mass and q is the monopole charge of a self-gravitating magnetic field described by a nonlinear electrodynamics [55]. This model has been revisited by Borde, who clarified the avoidance of singularities in this spacetime [56, 57]. For a certain range of the parameter q, the Bardeen metric describes a black hole. When \(x\gg q\), it behaves as the Schwarzschild black hole but, when \(x\ll q\), it behaves as de Sitter space, therefore, the spacetime in general has two apparent horizons. Explicitly, there are two such horizons when

$$\begin{aligned} |q|<\frac{4M}{3\sqrt{3}}. \end{aligned}$$
(78)

Given the exterior metric (77), one can read off the corresponding energy density of the perfect fluid sphere, which can be parameterized as

$$\begin{aligned} \rho= & {} \frac{\rho _m }{\left( a^2+a_0^2\right) ^{3/2}}, \end{aligned}$$
(79)

where \(\rho _m\) and \(a_0\) are two constants and a(t) is the time-dependent radius of the fluid sphere. Substituting Eq. (79) into Eq. (2) yields

$$\begin{aligned} {\dot{a}^2}=\frac{8\pi }{3}\frac{\rho _m a^2}{\left( a^2+a_0^2\right) ^{3/2}}-k, \end{aligned}$$
(80)

describing a pulsating sphere. However, the pulsation is again unobservable by an observer at infinity due to the unavoidable formation of an apparent horizon. On the other hand, if we regard the above equation as the Friedmann equation to study its cosmic evolution, we find it can give an exponential inflationary universe provided that \(a\ll a_0\). Thus it would be interesting to investigate this inflationary model in great detail.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, C., Lu, Y., Shen, YG. et al. Pulsation of black holes. Gen Relativ Gravit 50, 15 (2018). https://doi.org/10.1007/s10714-017-2335-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-017-2335-3

Keywords

Navigation