Skip to main content
Log in

Fluid-magnetic helicity in axisymmetric stationary relativistic magnetohydrodynamics

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

The present work is intended to gain a fruitful insight into the understanding of the formations of magneto-vortex configurations and their role in the physical processes of mutual exchange of energies associated with fluid’s motion and the magnetic fields in an axisymmetric stationary hydromagnetic system subject to strong gravitational field (e.g., neutron star/magnetar). It is found that the vorticity flux vector field associated with vorticity 2-form is a linear combination of fluid’s vorticity vector and of magnetic vorticity vector. The vorticity flux vector obeys Helmholtz’s flux conservation. The energy equation associated with the vorticity flux vector field is deduced. It is shown that the mechanical rotation of vorticity flux surfaces contributes to the formation of vorticity flux vector field. The dynamo action for the generation of toroidal components of vorticity flux vector field is described in the presence of meridional circulations. It is shown that the stretching of twisting magnetic lines due to differential rotation leads to the breakdown of gravitational isorotation in the absence of meridional circulations. An explicit expression consists of rotation of vorticity flux surface, energy and angular momentum per baryon for the fluid-magnetic helicity current vector is obtained. The conservation of fluid-magnetic helicity is demonstrated. It is found that the fluid-magnetic helicity displays the energy spectrum arising due to the interaction between the mechanical rotation of vorticity flux surfaces and the fluid’s motion obeying Euler’s equations. The dissipation of a linear combination of modified fluid helicity and magnetic twist is shown to occur due to coupled effect of frame dragging and meridional circulation. It is found that the growing twist of magnetic lines causes the dissipation of modified fluid helicity in the absence of meridional circulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ioka, K., Sasaki, M.: Astroph. J. 600, 296 (2004)

    Article  ADS  Google Scholar 

  2. Etienne, Z.B., Liu, Y.T., Shapiro, S.L.: Phys. Rev. D 74, 044030 (2006)

    Article  ADS  Google Scholar 

  3. Colaiuda, A., Ferrari, V., Gaultieri, L., Pons, J.A.: Month. Not. R. Astron. Soc. 385, 2080 (2008)

    Article  ADS  Google Scholar 

  4. Ciolfi, R., Rezzolla, L.: Astrophys. J. 760, 1 (2012)

    Article  ADS  Google Scholar 

  5. Palenzuela, C.: Month. Not. R. Astron. Soc. 431, 1853 (2013)

    Article  ADS  Google Scholar 

  6. Pili, A.G., Bucciantini, N., Del Zanna, L.: Month. Not. R. Astron. Soc. 439, 3541 (2014)

    Article  ADS  Google Scholar 

  7. Uryu, K., Gourgoulhon, E., Markakis, C., Fujisawa, K., Tsokaros, A.: Phys. Rev. D 90, 101501 (2014)

    Article  ADS  Google Scholar 

  8. Franzon, B., Dexheimer, V., Schramm, S.: Month. Not. R. Astron. Soc. 456, 2937 (2016)

    Article  ADS  Google Scholar 

  9. Friedman, J.L., Stergioulas, N.: Rotating Relativistic Stars, Cambridge Monograph on Mathematical Physics. Cambridge University Press, Cambridge (2013)

    Book  MATH  Google Scholar 

  10. Bekenstein, J.D., Oron, E.: Phys. Rev. D 18, 1809 (1978)

    Article  ADS  Google Scholar 

  11. Gourgoulhon, E., Markakis, C., Uryu, K., Eriguchi, Y.: Phys. Rev. D 83, 104007 (2011)

    Article  ADS  Google Scholar 

  12. Carter, B.: In: Hazard, R., Mitton, S. (eds.) Active Galactic Nuclei, p. 273. Cambridge University Press, Cambridge (1979)

  13. Bekenstein, J.D.: Astroph. J. 319, 207 (1987)

    Article  ADS  Google Scholar 

  14. Birkl, R., Stergioulas, N., Muller, E.: Phys. Rev. D 84, 023003 (2011)

    Article  ADS  Google Scholar 

  15. Ferraro, V.C.A.: Month. Not. R. Astron. Soc. 97, 458 (1937)

    Article  ADS  Google Scholar 

  16. Raychaudhuri, A.K.: Month. Not. R. Astron. Soc. 189, 39 (1979)

    Article  ADS  Google Scholar 

  17. Prasad, G.: Rigidly connected magnetic lines: twisting and winding of magnetic lines, manuscript No. GERG-D-16-00571 Gen. Relativ. Gravit. (2017) (accepted)

  18. Moffat, H.K., Proctor, M.R.E.: J. Fluid Mech. 154, 493 (1985)

    Article  ADS  Google Scholar 

  19. Berger, M.A., Field, G.B.: J. Fluid Mech. 147, 133 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  20. Moffat, H.K., Ricca, R.L.: Proc. R. Soc. London A439, 411 (1992)

    Article  ADS  Google Scholar 

  21. Greenberg, P.J.: J. Math. Anal. Appl. 30, 128 (1970)

    Article  MathSciNet  Google Scholar 

  22. Tsamparlis, M., Mason, D.P.: J. Math. Phys. 24, 1577 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  23. Prasad, G.: Gen. Relativ. Gravit. 11, 177 (1979)

    Article  ADS  Google Scholar 

  24. Carter, B.: In: Dewitt, C., Dewitt, B.S. (eds) Black Hole-Les Houches 1972, p. 57. Gordan and Breach, New York (1973)

  25. Bekenstein, J.D., Eichler, D.: Astroph. J. 298, 493 (1985)

    Article  ADS  Google Scholar 

  26. Taylor, J.R.: Classical Mechanics, vol. 10. University Science Books, California (2005)

    MATH  Google Scholar 

  27. Kundt, W., Trumper, M.: Z. Phys. 192, 41 (1966)

    Article  Google Scholar 

  28. Ehlers, J.: Gen. Relativ. Gravit. 25, 1225 (1993)

    Article  ADS  Google Scholar 

  29. Lichnerowicz, A.: Relativistic Hydrodynamics and Magnetohydrodynamics. W. A. Benjamin Inc, New York (1967)

    MATH  Google Scholar 

  30. Saffman, P.G.: Vortex Dynamics. Cambridge University Press, Cambridge (1992)

    MATH  Google Scholar 

  31. Thorne, K.S.: In: Sachs, R.K. (ed.) General Relativity and Cosmology, p. 237. Academic Press, New York (1971)

  32. Bardeen, J. M.: In: DeWitt, C., DeWitt, B.S. (eds.) Black Hole—Les Houches 1972, p. 241. Gordan Breach, New York (1973)

  33. Glass, E.N.: J. Math. Phys. 18, 708 (1977)

    Article  ADS  Google Scholar 

  34. Prasad, G.: Gen. Relativ. Gravit. 44, 2687 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author is thankful to the reviewers who have gone through the first draft of the manuscript very patiently and have given some fruitful suggestions for further improvement of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Prasad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prasad, G. Fluid-magnetic helicity in axisymmetric stationary relativistic magnetohydrodynamics. Gen Relativ Gravit 49, 126 (2017). https://doi.org/10.1007/s10714-017-2293-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-017-2293-9

Keywords

Navigation