Skip to main content
Log in

On the role of dissipation in structure formation for dilute relativistic gases: the fluctuating static background case

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

A correction to the Jeans stability criterion due to dissipation is established for the case of dilute high temperature gases. This effect is only relevant in the relativistic scenario and includes additional terms due to a density gradient driven heat flux, a non-vanishing bulk viscosity and the space-time dependent gravitational potential first order fluctuations. The result is obtained by thoroughly analyzing the exponentially growing modes present in the dynamics of density fluctuations in the linearized relativistic Navier–Stokes regime. The corrections to the corresponding Jeans mass and wavenumber are explicitly obtained and are compared to the non-relativistic and non-dissipative values using the transport coefficients obtained in the BGK approximation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Jeans, J.: Philos. Trans. R. Soc. A 199, 49 (1902)

  2. Jeans, J.: Astronomy and Cosmogony, 2nd edn. Cambridge University Press, Cambridge (1928); reprinted by Dover Publications, Inc., 1961, pp. 345–350

  3. Weinberg, S.: Entropy generation and the survival of protogalaxies in an expanding universe. Astrophys. J. 168, 175 (1971)

    Article  ADS  Google Scholar 

  4. Kolb, E.W., Turner, M.S.: The Early Universe. Addison-Wesley, Reading (1990)

    MATH  Google Scholar 

  5. Corona-Galindo, M.G., Dehnen, H.: The jeans instability criterion for a compressible fluid including viscosity and heat conduction. Astrophys. Space Sci. 153, 87–94 (1989)

    Article  ADS  MATH  Google Scholar 

  6. Carlevaro, Nakia, Montani, G.: Jeans instability in the presence of viscous effects. Int. J. Mod. Phys. D 18, 1257–1272 (2009)

    Article  ADS  MATH  Google Scholar 

  7. Mondragón Suárez, J.H., Sandoval-Villalbazo, A.: Jeans instability analysis in the presence of heat in Eckart’s frame. Gen. Relativ. Gravit. 44, 139–145 (2012)

    Article  ADS  MATH  Google Scholar 

  8. Sandoval-Villalbazo, A., García-Perciante, A.L., Garcia-Colin, L.S.: Relativistic transport theory for simple fluids to first order in the gradients. Phys. A 388, 3765–3770 (2009)

    Article  MATH  Google Scholar 

  9. Hiscock, W.A., Lindblom, L.: Generic instabilities in first-order dissipative relativistic fluid theories. Phys. Rev. D 31, 725 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  10. Cercignani, C., Medeiros Kremer, G.: The Relativistic Boltzmann Equation: Theory and Applications. Birkhuser, Berlin (2002)

  11. García-Perciante, A.L., Sandoval-Villalbazo, A., García-Colín, L.S.: On the microscopic nature of dissipative effects in special relativistic kinetic theory. J. Non-Equilib. Thermodyn. 37, 43 (2012)

    Article  ADS  MATH  Google Scholar 

  12. García-Perciante, A.L., Méndez, A.R., Sandoval-Villalbazo, A.: Relativistic bulk viscosity in the relaxation time approximation: a chaotic velocities approach. J. Phys.: Conf. Ser. 654, 1 (2015)

    Google Scholar 

  13. García-Perciante, A.L., García-Colin, L.S., Sandoval-Villalbazo, A.: The Rayleigh—Brillouin spectrum in special relativistic hydrodynamics. Phys. Rev. E 79, 066310 (2009)

    Article  ADS  MATH  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from CONACyT through Grant Number CB2011/167563.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. García-Perciante.

Appendices

Appendix A

In this appendix we show that the coefficient \(\sigma \) in Eq. (22) is positive for all values of z, where \(z=kT_0/mc^2\). First we note that \(\sigma \) can be written as

$$\begin{aligned} \nonumber \sigma= & {} \frac{q^2}{\tilde{\rho }_0}\left[ -q^2\left( A-D_{TR}-\tilde{\rho }_0\gamma \right) \right. \\&-\frac{8\pi G \tilde{\rho }_0}{c^2}\left( \frac{n_0\varepsilon _0}{\tilde{\rho }_0c^2}+\frac{3}{2}\right) \left( A-D_{TR}-\tilde{\rho }_0\gamma \right) \\ \nonumber&+ \left. \frac{12 \pi G \tilde{\rho }_0\mu }{c^2}\right] . \nonumber \end{aligned}$$
(31)
Fig. 3
figure 3

The combination \(\left( A(z)-D_{TR}(z)-\tilde{\rho }_0(z)\gamma (z)\right) \) is shown as a function of z (top). The plot on the bottom shows the comparison of \(\left| 8\left( \frac{n_0\varepsilon _0(z)}{\tilde{\rho }_0(z)c^2}+\frac{3}{2}\right) \left( A(z)-D_{TR}(z)-\tilde{\rho }_0(z) \gamma (z)\right) \right| \) (solid line) and \(\left| 12\mu (z)\right| \) (dashed line) as functions of z

The plot on the top in Fig. 3 shows that \(\left( A(z)-D_{TR}(z)+\tilde{\rho }_0(z)\gamma (z)\right) \) is negative and thus the first term in the bracket is positive. On the other hand, the second and third terms, which do not depend on q, have opposite signs. However, the plot on the bottom of Fig. 3 shows that

$$\begin{aligned} \left| 8\left( \frac{n_0\varepsilon _0(z)}{\tilde{\rho }_0(z)c^2}+\frac{3}{2}\right) \left( A(z)-D_{TR}(z)-\tilde{\rho }_0(z) \gamma (z)\right) \right| \gg \left| 12\mu (z)\right| , \end{aligned}$$

such that one can conclude that \(\sigma \) is positive. It is important to point out that the values plotted in Fig. 3 correspond to the transport coefficients obtained within the relaxation approximation (see “Appendix B”).

Appendix B

In this appendix we show explicitly the transport coefficients appearing in the closure relations (9) and (10). The quantities \(\mu \left( z\right) ,\eta \left( z\right) ,L_{TT}\left( z\right) \) and \(L_{nT}\left( z\right) \) correspond to the bulk viscosity, shear viscosity and the conductivities associated to heat flux respectively, as functions of the relativistic parameter z. These coefficients where obtained through the usual methods in kinetic theory based on a relaxation time approximation in Refs. [8, 10, 12], however we have decided to include them in this work in a compact and uniform notation. For the viscosities we have

$$\begin{aligned} \mu \left( z\right) =-\frac{1}{3}nmc^{2}\tau \frac{\left[ z\left( 2-20z^{2}\right) {\mathcal {G}}\left( \frac{1}{z}\right) +13z^{2}\mathcal {G}^{2}\left( \frac{1}{z}\right) -2z\mathcal {G}^{3}\left( \frac{1}{z}\right) -3z^{2}\right] }{3z^{2}\mathcal {G}\left( \frac{1}{z}\right) \alpha \left( z\right) } \end{aligned}$$
(32)

and

$$\begin{aligned} \eta \left( z\right) =-nmc^{2}\tau z{\mathcal {G}}\left( \frac{1}{z}\right) , \end{aligned}$$
(33)

where

$$\begin{aligned} \alpha \left( z\right) =\frac{1}{z}\left[ -\frac{1}{z}{\mathcal {G}}\left( \frac{1}{z}\right) +\frac{1}{z\mathcal {G}\left( \frac{1}{z}\right) }+5\right] -\frac{1}{\mathcal {G}\left( \frac{1}{z}\right) }. \end{aligned}$$
(34)

Considering that heat flux is written as in Eq. (10) we have

$$\begin{aligned} L_{TT}\left( z\right) =nmc^{4}z^{3}\tau \left[ \frac{1}{z}{\mathcal {G}}\left( \frac{1}{z}\right) -1\right] \left[ \alpha \left( z\right) +\frac{1}{\mathcal {G}\left( \frac{1}{z}\right) }\right] \end{aligned}$$
(35)

and

$$\begin{aligned} L_{nT}\left( z\right) =-nmc^{4}z^{3}\tau \left[ \alpha \left( z\right) +\frac{1}{{\mathcal {G}}\left( \frac{1}{z}\right) }\right] , \end{aligned}$$
(36)

notice that \(L_{TT}\) and \(L_{nT}\) have opposite sign.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García-Perciante, A.L., Méndez, A.R. & Sandoval-Villalbazo, A. On the role of dissipation in structure formation for dilute relativistic gases: the fluctuating static background case. Gen Relativ Gravit 49, 89 (2017). https://doi.org/10.1007/s10714-017-2248-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-017-2248-1

Keywords

Navigation