Skip to main content
Log in

Twisted Lorentzian manifolds: a characterization with torse-forming time-like unit vectors

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

Robertson–Walker and generalized Robertson–Walker spacetimes may be characterized by the existence of a time-like unit torse-forming vector field, with other constrains. We show that Twisted manifolds may still be characterized by the existence of such (unique) vector field, with no other constrain. Twisted manifolds generalize RW and GRW spacetimes by admitting a scale function that depends both on time and space. We obtain the Ricci tensor, corresponding to the stress–energy tensor of an imperfect fluid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alías, L., Romero, A., Sánchez, M.: Uniqueness of complete space-like hypersurfaces of constant mean curvature in generalized Robertson–Walker spacetimes. Gen. Relativ. Gravit. 27(1), 71–84 (1995)

    Article  ADS  MATH  Google Scholar 

  2. Brozos-Vázqez, M., Garcia-Rio, E., Vázquez-Lorenzo, R.: Some remarks on locally conformally at static space-times. J. Math. Phys. 46, 022501 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Chen, B.-Y.: Totally umbilical submanifolds. Soochow J. Math. 5, 9–37 (1979)

    MathSciNet  MATH  Google Scholar 

  4. Chen, B.-Y.: A simple characterization of generalized Robertson–Walker spacetimes. Gen. Relativ. Gravit. 46, 1833 (2014)

  5. Chen, B.-Y.: Rectifying submanifolds of Riemannian manifolds and torqued vector fields. Kragujev. J. Math. 41(1), 93–103 (2017)

    Google Scholar 

  6. Coley, A.A., McManus, D.J.: On spacetimes admitting shear-free, irrotational, geodesic time-like congruences. Class. Quantum Gravity 11(5), 1261–1282 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Friedmann, A.A.: Über die Krümmung des Raumes. Z. Phys. 10, 377–386 (1922)

    Article  ADS  MATH  Google Scholar 

  8. Hervik, S., Ortaggio, M., Wylleman, L.: Minimal tensors and purely electric or magnetic spacetimes of arbitrary dimension. Class. Quantum Gravity 30, 165014 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Mantica, C.A., Molinari, L.G.: Weyl compatible tensors. Int. J. Geom. Methods Mod. Phys. 11(8), 1450070 (2014)

  10. Mantica, C.A., Molinari, L.G.: On the Weyl and Ricci tensors of Generalized Robertson–Walker spacetimes. J. Math. Phys. 57(10), 102502 (2016)

  11. Mantica, C.A., Molinari, L.G.: Generalized Robertson–Walker spacetimes: a survey. Int. J. Geom. Methods Mod. Phys. 14(3), 1730001 (2017)

  12. Maartens, R.: Causal thermodynamics in relativity. Natal University, South Africa, Lectures given at the Hanno Rund Workshop on Relativity and Thermodynamics (1996). arXiv:astro-ph/9609119

  13. Ponge, R., Reckziegel, H.: Twisted products in pseudo-Riemannian geometry. Geom. Dedicata 48(1), 15–25 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  14. Robertson, H.P.: Kinematics and world structure. Astrophys. J. 82, 284–301 (1935) [Gen. Relativ. Gravit. 31, 1991–2000 (1999)]

  15. Walker, A.G.: On Milne’s theory of World’s structure. Proc. Lond. Math. Soc. 42(2), 90–127 (1937)

    Article  MathSciNet  Google Scholar 

  16. Weinberg, S.: Gravitation and Cosmology. Wiley, New York (1972)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Guido Molinari.

Appendix

Appendix

$$\begin{aligned} (i,j,k,\ldots =0,1,\ldots ,n-1 ; \quad \mu ,\nu ,\rho ,\ldots = 1,2, \ldots , n-1) \end{aligned}$$

Christoffel symbols: \(\Gamma _{ij}^k = \Gamma _{ji}^k = \tfrac{1}{2}g^{km} (\partial _i g_{jm} +\partial _j g_{im} -\partial _m g_{ij})\).

$$\begin{aligned} \Gamma _{i,0}^0= & {} 0,\quad \Gamma _{0,0}^k=0, \quad \Gamma ^\rho _{\mu ,0} = (\dot{f}/f ) \delta ^\rho _\mu , \quad \Gamma ^0_{\mu ,\nu } = f\dot{f} g^*_{\mu \nu }, \end{aligned}$$
(14)
$$\begin{aligned} \Gamma ^\rho _{\mu ,\nu }= & {} \Gamma ^{*\rho }_{\mu ,\nu } + (f_\nu /f) \delta ^\rho _\mu + (f_\mu /f) \delta ^\rho _\nu - (f^\rho /f) g^*_{\mu \nu } \end{aligned}$$
(15)

where \(\dot{f} =\partial _t f\), \(f_\mu = \partial _\mu f\) and \(f^\mu = g^{*\mu \nu } f_\nu \).

Riemann tensor: \(R_{jkl}{}^m = -\partial _j \Gamma ^m_{k,l} + \partial _k \Gamma ^m_{j,l} + \Gamma _{j,l}^p\Gamma ^m_{kp} - \Gamma _{k,l}^p \Gamma _{jp}^m \)

$$\begin{aligned} R_{\mu 0\rho }{}^0= & {} (f{\ddot{f}}) g^*_{\mu \rho } \end{aligned}$$
(16)
$$\begin{aligned} R_{\mu \nu \rho }{}^0= & {} g^*_{\mu \rho } (f \partial _\nu \dot{f} - \dot{f} f_\nu ) - g^*_{\nu \rho } (f \partial _\mu \dot{f} - \dot{f} f_\mu ) \end{aligned}$$
(17)
$$\begin{aligned} R_{\mu \nu \rho }{}^\sigma= & {} \, R^*_{\mu \nu \rho }{}^\sigma + \left( {\dot{f}}^2 - \frac{f^\lambda f_\lambda }{f^2} \right) (g^*_{\mu \rho }\delta ^\sigma _\nu - g^*_{\nu \rho }\delta ^\sigma _\mu )\nonumber \\&+\frac{2}{f^2} ( f^\sigma f_\nu g^*_{\mu \rho } - f^\sigma f_\mu g^*_{\nu \rho } + f_\mu f_\rho \delta ^\sigma _\nu - f_\nu f_\rho \delta ^\sigma _\mu ) \nonumber \\&+\frac{1}{f} \left[ \nabla ^*_\mu (f^\sigma g^*_{\nu \rho } - f_\rho \delta ^\sigma _\nu ) - \nabla ^*_\nu ( f^\sigma g^*_{\mu \rho } - f_\rho \delta ^\sigma _\mu ) \right] \end{aligned}$$
(18)

Ricci tensor: \(R_{jl} = R_{jkl}{}^k \)

$$\begin{aligned} R_{00}&= -(n-1) ({\ddot{f}} / f) \end{aligned}$$
(19)
$$\begin{aligned} R_{\mu 0}&= -(n-2)\partial _\mu (\dot{f} / f) \end{aligned}$$
(20)
$$\begin{aligned} R_{\mu \nu }&= R^*_{\mu \nu } + g^*_{\mu \nu } [(n-2){\dot{f}}^2 + f{\ddot{f}}] +2(n-3)\frac{f_\mu f_\nu }{f^2} -(n-4) \frac{f^\sigma f_\sigma }{f^2} g^*_{\mu \nu } \nonumber \\&\quad -(n-3) \frac{1}{f}\nabla ^*_\mu f_\nu - \frac{1}{f} g^*_{\mu \nu } \nabla ^*_\sigma f^\sigma \end{aligned}$$
(21)

Curvature scalar: \(R=R^k{}_k \)

$$\begin{aligned} R=\frac{R^*}{f^2} +(n-1) \left[ (n-2)\frac{{\dot{f}}^2}{f^2} + 2\frac{{\ddot{f}}}{f}\right] - (n-2)(n-5)\frac{f^\sigma f_\sigma }{f^4} -2(n-2)\frac{\nabla ^*_\sigma f^\sigma }{f^3} \end{aligned}$$
(22)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mantica, C.A., Molinari, L.G. Twisted Lorentzian manifolds: a characterization with torse-forming time-like unit vectors. Gen Relativ Gravit 49, 51 (2017). https://doi.org/10.1007/s10714-017-2211-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-017-2211-1

Keywords

Navigation