Skip to main content
Log in

Hawking radiation from magnetized Kerr–Newman black hole

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

Hawking radiation of charged scalar and Dirac particles from the event horizon of magnetized Kerr–Newman black holes is studied using the Hamilton–Jacobi method and WKB approximation. This is done by calculating tunneling probabilities of these particles from the horizons of magnetized black holes. This method yields the Hawking temperature of magnetized Kerr–Newman black holes as well. It is interesting to note that while the tunneling probabilities depend upon the background magnetic field, the Hawking temperature is not affected by magnetization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kerner, R., Mann, R.B.: Class. Quantum Grav. 25, 095014 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  2. Kerner, R., Mann, R.B.: Phys. Lett. B 665, 277 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  3. Gillani, U.A., Rehman, M., Saifullah, K.: J. Cosmol. Astropart. Phys. 1106, 016 (2011)

    Article  ADS  Google Scholar 

  4. Ahmad, J., Saifullah, K.: J. Cosmol. Astropart. Phys. 08, 011 (2011)

    Article  ADS  Google Scholar 

  5. Parikh, M.K., Wilczek, F.: Phys. Rev. Lett. 85, 5042 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  6. Srinivasan, K., Padmanabhan, T.: Phys. Rev. D 60, 24007 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  7. Shankaranarayanan, S., Padmanabhan, T., Srinivasan, K.: Class. Quantum Grav. 19, 2671 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  8. Gibbons, G.W., Mujtaba, A.H., Pope, C.N.: Class. Quantum Grav. 30, 125008 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  9. Gibbons, G.W., Pang, Y., Pope, C.N.: Phys. Rev. D 89, 044029 (2014)

    Article  ADS  Google Scholar 

  10. Jiang, Q.-Q., Wu, S.-Q., Cai, X.: Phys. Rev. D 73, 064003 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  11. Yang, S.Z., Chen, D.Y.: Int. J. Theor. Phys. 46, 1747 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

A research Grant from the Higher Education Commission of Pakistan under its Project No. 20-2087 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Saifullah.

Appendix: Magnetized Kerr–Newman spacetime

Appendix: Magnetized Kerr–Newman spacetime

This appendix is mainly included for the purpose of completeness with most of the definitions taken from Ref. [8]. For the magnetized Kerr–Newman metric

$$\begin{aligned} ds^{2}=H\left[ -fdt^{2}+R^{2}\left( \frac{dr^{2}}{\Delta }+d\theta ^{2}\right) \right] +\frac{\Sigma \sin ^{2}\theta }{HR^{2}}(d\phi -\omega dt)^{2}, \end{aligned}$$

we define the following quantities

$$\begin{aligned} H=1+\frac{H_{(1)}B+H_{(2)}B^{2}+H_{(3)}B^{3}+H_{(4)}B^{4}}{R^{2}}, \end{aligned}$$

with

$$\begin{aligned} H_{(1)}= & {} 2aqr\sin ^{2}\theta -2p\left( r^{2}+a^{2}\right) \cos \theta , \\ H_{(2)}= & {} \frac{1}{2}\left[ \left( r^{2}+a^{2}\right) ^{2}-a^{2}\Delta \sin ^{2}\theta \right] \sin ^{2}\theta +\frac{3}{2}q^{2}\left( a^{2}+r^{2}\cos ^{2}\theta \right) , \\ H_{(3)}= & {} -pa^{2}\Delta \sin ^{2}\theta \cos \theta -\frac{qa\Delta }{2r} \left[ r^{2}\left( 3-\cos ^{2}\theta \right) \cos ^{2}\theta +a^{2}\left( 1+\cos ^{2}\theta \right) \right] \\&+\,\frac{aq\left( r^{2}+a^{2}\right) ^{2}\left( 1+\cos ^{2}\theta \right) }{2r}+ \frac{1}{2}p\left( r^{4}-a^{4}\right) \sin ^{2}\theta \cos \theta \\&+\,\frac{q{\overline{q}}a\left[ \left( 2r^{2}+a^{2}\right) \cos ^{2}\theta +a^{2}\right] }{2r}-\frac{1}{2}p{\overline{q}}^{2}\left( r^{2}+a^{2}\right) \cos ^{3}\theta , \\ H_{(4)}= & {} \frac{1}{16}\left( r^{2}+a^{2}\right) ^{2}R^{2}\sin ^{4}\theta +\frac{1}{4} Ma^{2}r\left( r^{2}+a^{2}\right) \sin ^{6}\theta \\&+\,\frac{1}{4}Ma^{2}{\overline{q}}^{2}r\left( \cos ^{2}\theta -5\right) \sin ^{2}\theta \cos ^{2}\theta +\frac{1}{4}Ma^{2}r\left( r^{2}+a^{2}\right) \sin ^{6}\theta \\&+\,\frac{1}{4}M^{2}a^{2}\left[ r^{2}\left( \cos ^{2}\theta -3\right) ^{2}\cos ^{2}\theta +a^{2}\left( 1+\cos ^{2}\theta \right) ^{2}\right] \\&+\,\frac{1}{8}{\overline{q}} ^{2}\left( r^{2}+a^{2}\right) \left( r^{2}+a^{2}+a^{2}\sin ^{2}\theta \right) \sin ^{2}\theta \cos ^{2}\theta \\&+\,\frac{1}{16}{\overline{q}}^{4}\left[ r^{2}\cos ^{2}\theta +a^{2}\left( 1+\sin ^{2}\theta \right) \right] \cos ^{2}\theta , \end{aligned}$$

where

$$\begin{aligned} {\overline{q}}^{2}=q^{2}+p^{2}. \end{aligned}$$

Also,

$$\begin{aligned} \omega =\frac{1}{\Sigma }\left[ \left( 2Mr-{\overline{q}}^{2}\right) a+\omega _{(1)}B+\omega _{(2)}B^{2}+\omega _{(3)}B^{3}+\omega _{(4)}B^{4}\right] \end{aligned}$$

with

$$\begin{aligned} \omega _{(1)}= & {} -2qr\left( r^{2}+a^{2}\right) +2ap\Delta \cos \theta , \\ \omega _{(2)}= & {} -\frac{3}{2}a{\overline{q}}^{2}\left( r^{2}+a^{2}+\Delta \cos ^{2}\theta \right) , \\ \omega _{(3)}= & {} 4qM^{2}a^{2}r\\&+\,\frac{1}{2}ap{\overline{q}}^{4}\cos ^{3}\theta + \frac{1}{2}qr\left( r^{2}+a^{2}\right) \left[ r^{2}-a^{2}+\left( r^{2}+3a^{2}\right) \cos ^{2}\theta \right] \\&+\,\frac{1}{2}ap\left( r^{2}+a^{2}\right) \left[ 3r^{2}+a^{2}-\left( r^{2}-a^{2}\right) \cos ^{2}\theta \right] \cos \theta \\&+\,\frac{1}{2}q{\overline{q}}^{2}r\left[ \left( r^{2}+3a^{2}\right) \cos ^{2}\theta -2a^{2}\right] +\frac{1}{2}ap{\overline{q}}^{2}\left[ 3r^{2}+a^{2}+2a^{2}\cos ^{2}\theta \right] \cos \theta \\&-\,aM{\overline{q}}^{2}\left( 2aq+pr\cos ^{3}\theta \right) +qM\left[ r^{4}-a^{4}+r^{2}\left( r^{2}+3a^{2}\right) \sin ^{2}\theta \right] \\&-\,apMr\left[ 2R^{2}+\left( r^{2}+a^{2}\right) \sin ^{2}\theta \right] \cos \theta ,\\ \omega _{(4)}= & {} \frac{1}{2}a^{3}M^{3}r\left( 3+\cos ^{4}\theta \right) -\frac{1}{16}a {\overline{q}}^{6}\cos ^{4}\theta \\&-\frac{1}{8}a{\overline{q}}^{4}\left[ r^{2}\left( 2+\sin ^{2}\theta \right) \cos ^{2}\theta +a^{2}\left( 1+\cos ^{4}\theta \right) \right] \\&+\,\frac{1}{16}a{\overline{q}}^{2}\left( r^{2}+a^{2}\right) \left[ r^{2}\left( 1-6\cos ^{2}\theta +3\cos ^{4}\theta \right) -a^{2}\left( a+\cos ^{4}\theta \right) \right] \\&-\,\frac{1}{4}a^{3}M^{2}{\overline{q}}^{2}\left( 3+\cos ^{4}\theta \right) +\frac{1}{4}aM^{2}\left[ r^{4}\left( 3-6\cos ^{2}\theta +3\cos ^{4}\theta \right) \right. \\&\left. +\,2a^{2}r^{2}\left( 3\sin ^{2}\theta -2\cos ^{4}\theta \right) -a^{4}\left( 1+\cos ^{4}\theta \right) \right] +\frac{1}{8}aM{\overline{q}}^{4}r\cos ^{4}\theta \\&+\,\frac{1}{8}aM{\overline{q}}^{2}r\cos ^{4}\theta \left[ 2r^{2}\left( 3-\cos ^{2}\theta \right) \cos ^{2}\theta -a^{2}\left( 1-3\cos ^{2}\theta -2\cos ^{4}\theta \right) \right] \\&+\,\frac{1}{8}aMr\left( r^{2}+a^{2}\right) \left[ r^{2}\left( 3+6\cos ^{2}\theta -\cos ^{4}\theta \right) -a^{2}\left( 1-6\cos ^{2}\theta -3\cos ^{4}\theta \right) \right] \end{aligned}$$

The electromagnetic vector potential is

$$\begin{aligned} A=\left( \Phi _{0}-\omega \Phi _{3}\right) dt+\Phi _{3}d\phi , \end{aligned}$$
(6.15)

where

$$\begin{aligned} \Phi _{0}=\frac{\Phi _{0}^{(0)}+\Phi _{0}^{(1)}B+\Phi _{0}^{(2)}B^{2}+\Phi _{0}^{(3)}B^{3}}{4\Sigma }, \end{aligned}$$
(6.16)

with

$$\begin{aligned} \Phi _{0}^{(0)}= & {} 4\left[ -qr\left( r^{2}+a^{2}\right) +ap\Delta \cos \theta , \right. \\ \Phi _{0}^{(1)}= & {} -6a{\overline{q}}^{2}\left( r^{2}+a^{2}+\Delta \cos ^{2}\theta \right) ,\\ \Phi _{0}^{(2)}= & {} -3q\left[ (r+2M)a^{4}-(r^{2}+4Mr+\Delta \cos ^{2}\theta )r^{3}\right. \\&+\,a^{2}\left( 2{\overline{q}}^{2}(r+2M)-6Mr^{2}-8M^{2}r \right. \\&-\left. \left. 3r\Delta \cos ^{2}\theta \right) \right] +3p\Delta \left[ 3ar^{2}+a^{3}+a(a^{2}+{\overline{q}}^{2}-r^{2})\cos ^{2}\theta \right] \cos \theta ,\\ \Phi _{0}^{(3)}= & {} -\frac{1}{2}a\left[ 4a^{4}M^{2}+a^{4}{\overline{q}}^{2}+12a^{2}M^{2} {\overline{q}}^{2}+2a^{2}{\overline{q}}^{4}\right. \\&+\,2a^{4}Mr-24a^{2}M^{3}r+4a^{2}M {\overline{q}}^{2}r \\&-\,24a^{2}M^{2}r^{2}-4a^{2}Mr^{3}-12M^{2}r^{4}-{\overline{q}} ^{2}r^{4}-6Mr^{5}\\&-\,6r\Delta \{2M\left( r^{2}+a^{2}\right) -{\overline{q}}^{2}r\}\cos ^{2}\theta \\&\left. +\,\Delta ({\overline{q}}^{4}-3{\overline{q}} ^{2}r^{2}+a^{2}\left( 4M^{2}+{\overline{q}}^{2}-6Mr\right) \cos ^{4}\theta \right] , \end{aligned}$$

Using \(\Delta (r_{+})=0\) and \(\Sigma (r_{+},\theta _{0})=r_{+}^{2}+a^{2}\) for fixed \(\theta =\theta _{0}=0\) we get

$$\begin{aligned} \Phi _{0}^{(0)}(r_{+,}\theta _{0})= & {} -4qr_{+}\left( r_{+}^{2}+a^{2}\right) ,\\ \Phi _{0}^{(1)}(r_{+,}\theta _{0})= & {} -6a{\overline{q}}^{2}\left( r_{+}^{2}+a^{2}\right) , \\ \Phi _{0}^{(2)}(r_{+,}\theta _{0})= & {} -3q\left[ (r_{+}+2M)a^{4}-\left( r_{+}^{5}+4Mr_{+}^{4}\right) \right. \\&\left. +\,a^{2}\left( 2{\overline{q}}^{2}(r_{+}+2M) -6Mr_{+}^{2}-8M^{2}r_{+}\right) \right] , \\ \Phi _{0}^{(3)}(r_{+,}\theta _{0})= & {} -\frac{1}{2}a\left[ 4a^{4}M^{2}+12a^{2}M^{2}{\overline{q}}^{2}+2a^{2}{\overline{q}} ^{4}+2a^{4}Mr_{+}-24a^{2}M^{3}r_{+}\right. \nonumber \\&\left. +\,4a^{2}M{\overline{q}}^{2}r_{+}-24a^{2}M^{2}r_{+}^{2}-4a^{2}Mr_{+}^{3}\right. \\&\left. -\,{\overline{q}}^{2}r_{+}^{4}-6Mr_{+}^{5}+a^{4}{\overline{q}}^{2} -12M^{2}r_{+}^{4}\right] . \end{aligned}$$

and

$$\begin{aligned} \Phi _{3}=\frac{\Phi _{3}^{(0)}+\Phi _{3}^{(1)}B+\Phi _{3}^{(2)}B^2+\Phi _{3}^{(3)}B^3}{R^{2}H} \end{aligned}$$
(6.17)

with

$$\begin{aligned} \Phi _{3}^{(0)}= & {} aqr\sin ^{2}\theta -p\left( r^{2}+a^{2}\right) \cos \theta , \\ \Phi _{3}^{(1)}= & {} \frac{1}{2}\left[ \Sigma \sin ^{2}\theta +3{\overline{q}} ^{2}\left( a^{2}+r^{2}\cos ^{2}\theta \right) \right] , \\ \Phi _{3}^{(2)}= & {} \frac{3}{4}aqr\left( r^{2}+a^{2}\right) \sin ^{4}\theta -\frac{3}{4} p\left( r^{2}+a^{2}\right) ^{2}\sin ^{2}\theta \cos \theta +3a^{2}pMr\sin ^{2}\theta \cos \theta \\&+\,\frac{3}{2}aqm\left[ r^{2}\left( 3-\cos ^{2}\theta \right) \cos ^{2}\theta +a^{2}\left( 1+\cos ^{2}\theta \right) \right] -\frac{3}{4}aq{\overline{q}}^{2}r\sin ^{2}\theta \cos ^{2}\theta \\&-\,\frac{3}{4}p{\overline{q}}^{2}\left[ \left( r^{2}-a^{2}\right) \cos ^{2}\theta +2a^{2}\right] \cos \theta , \\ \Phi _{3}^{(3)}= & {} \frac{1}{8}R^{2}\left( r^{2}+a^{2}\right) ^{2}\sin ^{4}\theta +\frac{1}{2 }a^{2}Mr\left( r^{2}+a^{2}\right) \sin ^{6}\theta \\&-\,\frac{1}{2}a^{2}{\overline{q}} ^{2}Mr\left( 5-\cos ^{2}\theta \right) \sin ^{2}\theta \cos ^{2}\theta \\&+\,\frac{1}{2}a^{2}M^{2}\left[ r^{2}\left( 3-\cos ^{2}\theta \right) ^{2}\cos ^{2}\theta +a^{2}\left( 1+\cos ^{2}\theta \right) ^{2}\right] \\&+\,\frac{1}{4}{\overline{q}} ^{2}\left( r^{2}+a^{2}\right) \left[ r^{2}+a^{2}+a^{2}\sin ^{2}\theta \right] \sin ^{2}\theta \cos ^{2}\theta \\&+\,\frac{1}{ 8}{\overline{q}}^{4}\left[ r^{2}\cos ^{2}\theta +a^{2}\left( 2-\cos ^{2}\theta \right) ^{2}\right] \cos ^{2}\theta , \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rizwan, M., Saifullah, K. Hawking radiation from magnetized Kerr–Newman black hole. Gen Relativ Gravit 48, 163 (2016). https://doi.org/10.1007/s10714-016-2159-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-016-2159-6

Keywords

Navigation