Skip to main content
Log in

Shear-free anisotropic cosmological models in \({\varvec{f}\,\varvec{(R)}}\) gravity

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We study a class of shear-free, homogeneous but anisotropic cosmological models with imperfect matter sources in the context of f(R) gravity. We show that the anisotropic stresses are related to the electric part of the Weyl tensor in such a way that they balance each other. We also show that within the class of orthogonal f(R) models, small perturbations of shear are damped, and that the electric part of the Weyl tensor and the anisotropic stress tensor decay with the expansion as well as the heat flux of the curvature fluid. Specializing in locally rotationally symmetric spacetimes in orthonormal frames, we examine the late-time behaviour of the de Sitter universe in f(R) gravity. For the Starobinsky model of f(R), we study the evolutionary behavior of the Universe by numerically integrating the Friedmann equation, where the initial conditions for the expansion, acceleration and jerk parameters are taken from observational data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Capozziello, S., De Laurentis, M.: Extended theories of gravity. Phys. Rep. 509, 167–321 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  2. Modesto, L.: Super-renormalizable quantum gravity. Phys. Rev. D 86, 044005 (2012)

    Article  ADS  Google Scholar 

  3. Modesto, L., Rachwal, L.: Super-renormalizable and finite gravitational theories. Nucl. Phys. B 889, 228–248 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Biswas, T., Gerwick, E., Koivisto, T., Mazumdar, A.: Towards singularity and ghost free theories of gravity. Phys. Rev. Lett. 108, 031101 (2012)

    Article  ADS  Google Scholar 

  5. Clifton, T., Ferreira, P.G., Padilla, A., Skordis, C.: Modified gravity and cosmology. Phys. Rep. 513, 1–189 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  6. De Felice, A., Tsujikawa, S.: \( f(R) \) theories. Living Rev. Rel. 13, 1002–4928 (2010)

    MATH  Google Scholar 

  7. Nojiri, S., Odintsov, S.D.: Introduction to modified gravity and gravitational alternative for dark energy. Int. J. Geom. Methods Mod. Phys. 4, 115–145 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Nojiri, S., Odintsov, S.D.: Unified cosmic history in modified gravity: from f (r) theory to lorentz non-invariant models. Phys. Rep. 505, 59–144 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  9. Buchdahl, H.A.: Non-linear Lagrangians and cosmological theory. Mon. Not. R. Astron. Soc. 150, 1 (1970)

    Article  ADS  Google Scholar 

  10. Starobinsky, A.A.: A new type of isotropic cosmological models without singularity. Phys. Lett. B 91, 99–102 (1980)

    Article  ADS  Google Scholar 

  11. Carroll, S., Duvvuri, V., Turner, M., Trodden, M.: Is cosmic speed-up due to new gravitational physics? Phys. Rev. D 70, 043528 (2004)

    Article  ADS  Google Scholar 

  12. Nojiri, S., Odintsov, S.D.: Modified gravity with negative and positive powers of curvature: unification of inflation and cosmic acceleration. Phys. Rev. D 68, 123512 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  13. Sotiriou, T.P., Liberati, S.: Metric-affine \( f(R) \) theories of gravity. Ann. Phys. 322, 935–966 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Nojiri, S., Odintsov, S.D.: Modified \( f(R) \) gravity consistent with realistic cosmology: from a matter dominated epoch to a dark energy universe. Phys. Rev. D 74, 086005 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  15. Starobinsky, A.A.: Disappearing cosmological constant in \( f(R) \) gravity. JETP Lett. 86, 157–163 (2007)

    Article  ADS  Google Scholar 

  16. Mimoso, J.P., Crawford, P.: Shear-free anisotropic cosmological models. Class. Quantum Gravity 10, 315 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  17. Ellis, G.: Dynamics of pressure-free matter in general relativity. J. Math. Phys. 8, 1171 (1967)

    Article  ADS  Google Scholar 

  18. G ö del, K.: Rotating universes in general relativity theory . In: Graves, L.M. et al. Proceedings of the International Congress of Mathematicians, vol. 1, p. 175. Cambridge, Mass (1952)

  19. Goldberg, J., Sachs, R.: A theorem on petrov type (field equations for proving theorem identifying geometrical properties of null congruence with existence of algebraically special riemann tensor). 1966. 13–23 (1962)

  20. Robinson, I., Schild, A.: Generalization of a theorem by goldberg and sachs. J. Math. Phys. 4, 484 (1963)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Ellis, G., MacCallum, M.A.: A class of homogeneous cosmological models. Commun. Math. Phys. 12, 108–141 (1969)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. MacCallum, M.: A class of homogeneous cosmological models iii: asymptotic behaviour. Commun. Math. Phys. 20, 57–84 (1971)

    Article  ADS  MathSciNet  Google Scholar 

  23. Collins, C.: Shear-free fluids in general relativity. Can. J. Phys. 64, 191–199 (1986)

    Article  ADS  Google Scholar 

  24. Barrow, J.D., Matzner, R.A.: The homogeneity and isotropy of the universe. Mon. Not. R. Astron. Soc. 181, 719–727 (1977)

    Article  ADS  Google Scholar 

  25. MacCallum, M., Stewart, J., Schmidt, B.: Anisotropic stresses in homogeneous cosmologies. Commun. Math. Phys. 17, 343–347 (1970)

    Article  ADS  MathSciNet  Google Scholar 

  26. Koivisto, T.S., Mota, D.F., Quartin, M., Zlosnik, T.G.: Possibility of anisotropic curvature in cosmology. Phys. Rev. D 83, 023509 (2011)

    Article  ADS  Google Scholar 

  27. Barrow, J.D., Ottewill, A.C.: The stability of general relativistic cosmological theory. J. Phys. A Math. Gen. 16, 2757 (1983)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Barrow, J.D., Clifton, T.: Exact cosmological solutions of scale-invariant gravity theories. Class. Quant. Gravity 23, L1 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Clifton, T., Barrow, J.D.: Further exact cosmological solutions to higher-order gravity theories. Class. Quant. Gravity 23, 2951 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Middleton, J.: On the existence of anisotropic cosmological models in higher order theories of gravity. Class. Quant. Gravity 27, 225013 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Abebe, A., Goswami, R., Dunsby, P.K.S.: Shear-free perturbations of \( f(R) \) gravity. Phys. Rev. D 84, 124027 (2011)

    Article  ADS  Google Scholar 

  32. Abebe, A.: Beyond concordance cosmology. Ph.D. thesis, UCT (University of Cape Town) (2013)

  33. Abebe, A.: Anti-newtonian cosmologies in \( f(R) \) gravity. Class. Quant. Gravity 31, 115011 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Abebe, A., Elmardi, M.: Irrotational-fluid cosmologies in fourth-order gravity. arXiv preprint arXiv:1411.6394 (2014)

  35. Ellis, G.F.R., Van Elst, H.: Cosmological models. In: Lachiéze-Rey, M. (ed.) Theoretical and Observational Cosmology, pp. 1–116. Springer, The Netherlands (1999)

    Chapter  Google Scholar 

  36. Maartens, R., Triginer, J.: Density perturbations with relativistic thermodynamics. Phys. Rev. D 56, 4640 (1997)

    Article  ADS  Google Scholar 

  37. Betschart, G.: General relativistic electrodynamics with applicantions in cosmology and astrophysics. Ph.D. thesis, University of Cape Town (2005)

  38. Carloni, S., Dunsby, P., Troisi, A.: Evolution of density perturbations in \( f(R) \) gravity. Phys. Rev. D 77, 024024 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  39. Ellis, G., Bruni, M.: Covariant and gauge-invariant approach to cosmological density fluctuations. Phys. Rev. D 40, 1804 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  40. Ellis, G., Maartens, R., MacCallum, M.A.: Relativistic Cosmology. Cambridge University Press, Cambridge (2012)

    Book  MATH  Google Scholar 

  41. Maartens, R.: Covariant velocity and density perturbations in quasi-newtonian cosmologies. Phys. Rev. D 58, 124006 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  42. Israel, W.: Nonstationary irreversible thermodynamics: a causal relativistic theory. Ann. Phys. 100 (1976). http://gen.lib.rus.ec/scimag/index.php?s=10.1016/0003-4916(76)90064-6

  43. Novella, M.: Cosmology and Gravitation Two, vol.  2, Atlantica S é guier Fronti è res, (1996)

  44. Maartens, R. Causal thermodynamics in relativity. arXiv preprint astro-ph/9609119 (1996)

  45. Rezzolla, L., Zanotti, O.: Relativistic Hydrodynamics. Oxford University Press, Oxford (2013)

    Book  MATH  Google Scholar 

  46. Coley, A.A., Van den Hoogen, R.: Qualitative analysis of viscous fluid cosmological models satisfying the israel-stewart theory of irreversible thermodynamics. Class. Quant. Gravity 12, 1977 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. Visser, M.: Jerk, snap and the cosmological equation of state. Class. Quant. Gravity 21, 2603 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. Nojiri, S., Odintsov, S, & Tsujikawa, S.: Properties of singularities in (phantom) dark energy universe. Phys. Rev. d71 063004 (2005). arXiv preprint hep-th/0501025

  49. Brandenberger, R. H.: The matter bounce alternative to inflationary cosmology. arXiv preprint arXiv:1206.4196 (2012)

  50. Cai, Y.-F.: Exploring bouncing cosmologies with cosmological surveys. Sci. China Phys. Mech. Astron. 57, 1414–1430 (2014)

    Article  ADS  Google Scholar 

  51. Bamba, K., Nojiri, S., Odintsov, S.D.: The future of the universe in modified gravitational theories: approaching a finite-time future singularity. J. Cosmol. Astropart. Phys. 2008, 045 (2008)

    Article  Google Scholar 

  52. Barrow, J.D.: More general sudden singularities. Class. Quant. Gravity 21, 5619 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amare Abebe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abebe, A., Momeni, D. & Myrzakulov, R. Shear-free anisotropic cosmological models in \({\varvec{f}\,\varvec{(R)}}\) gravity. Gen Relativ Gravit 48, 49 (2016). https://doi.org/10.1007/s10714-016-2046-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-016-2046-1

Keywords

Navigation