Skip to main content
Log in

On the spacetime connecting two aeons in conformal cyclic cosmology

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

As quotient spaces, Minkowski and de Sitter are fundamental, non-gravitational spacetimes for the construction of physical theories. When general relativity is constructed on a de Sitter spacetime, the usual Riemannian structure is replaced by a more general structure called de Sitter–Cartan geometry. In the contraction limit of an infinite cosmological term, the de Sitter–Cartan spacetime reduces to a singular, flat, conformal invariant four-dimensional cone spacetime, in which our ordinary notions of time interval and space distance are absent. It is shown that such spacetime satisfies all properties, including the Weyl curvature hypothesis, necessary to play the role of the bridging spacetime connecting two aeons in Penrose’s conformal cyclic cosmology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. See the “Appendix” for a mathematical definition of transitivity of homogeneous spaces.

  2. It is important to note that \(\eta _{\mu \nu } x^\mu x^\nu \ne 0\) in all other points of the cone. What vanishes in all points of the cone is the quadratic form written in terms of the five-dimensional ambient space coordinates \(\eta _\textit{AB} \chi ^A \chi ^B = 0\), as follows from (2) in the contraction limit \(l \rightarrow 0\).

  3. Gravitational waves could in principle exist in the cone spacetime. There is a problem, however: the field equation for a symmetric second-rank tensor (perturbation of the metric) is not conformal invariant [25]. A possible solution to this puzzle is to interpret a spin 2 as a 1-form assuming values in the translation group (perturbation of the tetrad), in which case its field equation turns out to be conformal invariant [26].

References

  1. Amelino-Camelia, G.: Doubly special relativity. Nature 418, 34 (2002). arXiv:gr-qc/0207049

    Article  ADS  Google Scholar 

  2. Amelino-Camelia, G.: Doubly-special relativity: first results and key open problems. Int. J. Mod. Phys. D 11, 1643 (2002). arXiv:gr-qc/0210063

    Article  MATH  MathSciNet  ADS  Google Scholar 

  3. Aldrovandi, R., Beltrán Almeida, J.P., Pereira, J.G.: de Sitter special relativity. Class. Quantum Gravit. 24, 1385 (2007). arXiv:gr-qc/0606122

    Article  MATH  ADS  Google Scholar 

  4. Cacciatori, S., Gorini, V., Kamenshchik, A.: Special relativity in the 21st century. Ann. Phys. (Berlin) 17, 728 (2008). arXiv:0807.3009 [gr-qc]

  5. Guo, H.Y., Huang, C.G., Tian, Y., Wu, H.T., Zhou, B.: Snyder’s model—de Sitter special relativity duality and de Sitter gravity. Class. Quantum Gravit. 24, 4009 (2007). arXiv:gr-qc/0703078

    Article  MATH  MathSciNet  ADS  Google Scholar 

  6. Zeeman, E.C.: Causality implies the Lorentz group. J. Math. Phys. 5, 490 (1964)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  7. Sharpe, R.: Differential geometry: Cartan’s generalization of Klein’s Erlangen program. Springer, Berlin (1997)

    MATH  Google Scholar 

  8. Wise, D.K.: MacDowell–Mansouri gravity and Cartan geometry. Class. Quantum Gravit. 27, 155010 (2010). arXiv:gr-qc/0611154

    Article  MathSciNet  ADS  Google Scholar 

  9. Inönü, E., Wigner, E.P.: On the contraction of groups and their representations. Proc. Natl. Acad. Sci. 39, 510 (1953)

    Article  MATH  ADS  Google Scholar 

  10. Aldrovandi, R., Beltrán Almeida, J.P., Pereira, J.G.: A singular conformal spacetime. J. Geom. Phys. 56, 1042 (2006). arXiv:gr-qc/0403099

    Article  MATH  MathSciNet  ADS  Google Scholar 

  11. Penrose, R.: Cycles of time: an extraordinary new view of the universe. Alfred Knopf, New York (2011)

    Google Scholar 

  12. Hawking, S.W., Ellis, G.F.R.: The large scale structure of space–time. Cambridge University Press, Cambridge (1973)

    Book  MATH  Google Scholar 

  13. Kobayashi, S., Nomizu, K.: Foundations of differential geometry. Interscience, New York (1963)

    MATH  Google Scholar 

  14. Gürsey, F.: Introduction to the de Sitter group. In: Gürsey, F. (ed.) Group theoretical concepts and methods in elementary particle physics. Gordon and Breach, New York (1962)

    Google Scholar 

  15. Aldrovandi, R., Pereira, J.G.: An introduction to geometrical physics. World Scientific, Singapore (1995)

    Book  MATH  Google Scholar 

  16. Callan, C.G., Coleman, S., Jackiw, R.: A new improved energy–momentum tensor. Ann. Phys. (NY) 59, 42 (1970)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  17. Aldrovandi, R., Pereira, J.G.: A second Poincaré group. In: Aratyn, H., et al. (eds.) Topics in theoretical physics: Festschrift for A. H. Zimerman. Fundação IFT, São Paulo (1998). arXiv:gr-qc/9809061

    Google Scholar 

  18. Tod, Paul: The equations of conformal cyclic cosmology. Gen. Relativ. Gravit. 47, 17 (2015). arXiv:1309.7248

    Article  MathSciNet  ADS  Google Scholar 

  19. Tod, K.P., Luebbe, C.: Conformal gauge singularities. Oberwalfach Rep. 3, 91 (2006)

    Google Scholar 

  20. Penrose, R.: Singularities and time-asymmetry. In: Hawking, S., Israel, W. (eds.) General relativity: an Einstein centenary survey. Cambridge University Press, Cambridge (1979)

    Google Scholar 

  21. Tod, K.P.: Isotropic cosmological singularities: other matter models. Class. Quantum Gravit. 20, 521 (2003). arXiv:gr-qc/0209071

    Article  MATH  MathSciNet  ADS  Google Scholar 

  22. Pereira, J.G., Sampson, A.C.: de Sitter geodesics: reappraising the notion of motion. Gen. Relativ. Gravit. 44, 1299 (2012). arXiv:1110.0965

    Article  MATH  MathSciNet  ADS  Google Scholar 

  23. Araujo, A., Pereira, J.G.: Entropy in locally-de Sitter spacetimes. Int. J. Mod. Phys. D 24, 1550099 (2015). arXiv:1506.06948

  24. Jennen, H.: Cartan geometry of spacetimes with a non-constant cosmological function \(\Lambda \). Phys. Rev. D 90, 084046 (2014). arXiv:1406.2621

    Article  ADS  Google Scholar 

  25. Deser, S., Henneaux, M.: A note on spin two fields in curved backgrounds. Class. Quantum Gravit. 24, 1683 (2007). arXiv:gr-qc/0611157

    Article  MATH  MathSciNet  ADS  Google Scholar 

  26. Arcos, H.I., Gribl Lucas, T., Pereira, J.G.: Consistent gravitationally-coupled spin-2 field theory. Class. Quantum Gravit. 27, 145007 (2010). arXiv:1001.3407

    Article  ADS  Google Scholar 

  27. Isham, C.J.: Canonical quantum gravity and the problem of time. arXiv:gr-qc/9210011

  28. Kuchař, K.V.: Time and interpretations of quantum gravity. In: Kunstatter, G., Vincent, D., Williams, J. (eds.) Proceedings of the 4th Canadian conference on general relativity and relativistic astrophysics. World Scientific, Singapore (1992). Reprinted in Int. J. Mod. Phys. Proc. Suppl. D 20, 3 (2011)

  29. Rovelli, C.: Forget time. arXiv:0903.3832

  30. Bacry, H., Lévy-Leblond, J.M.: Possible kinematics. J. Math. Phys. 9, 1605 (1968)

    Article  MATH  ADS  Google Scholar 

  31. Duval, C., Burdet, G., Künsle, H.P., Perrin, M.: Bargmann structures and Newton–Cartan theory. Phys. Rev. D 31, 1841 (1985)

    Article  MathSciNet  ADS  Google Scholar 

  32. Aldrovandi, R., Barbosa, A.L., Crispino, L.C.B., Pereira, J.G.: Nonrelativistic spacetimes with cosmological constant. Class. Quantum Gravit. 16, 495 (1999). arXiv:gr-qc/9801100

    Article  MATH  MathSciNet  ADS  Google Scholar 

  33. Riess, A.G., et al.: Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 116, 1009 (1998). arXiv:astro-ph/9805201

    Article  ADS  Google Scholar 

  34. Perlmutter, S., et al.: Measurements of omega and lambda from 42 high-redshift supernovae. Astrophys. J. 517, 565 (1999). arXiv:astro-ph/9812133

    Article  ADS  Google Scholar 

  35. de Bernardis, P., et al.: A flat universe from high-resolution maps of the cosmic microwave background radiation. Nature 404, 955 (2000). arXiv:astro-ph/0004404

    Article  ADS  Google Scholar 

  36. Weinberg, S.: Gravitation and cosmology. Wiley, New York (1972)

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank an anonymous referee for valuable comments and suggestions. They would like to thank also FAPESP, CAPES and CNPq for partial financial support. A.A. thanks Universidad Centroccidental Lisandro Alvarado, Barquisimeto, Venezuela, for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. G. Pereira.

Appendix: On the notion of transitivity

Appendix: On the notion of transitivity

Spacetimes with constant sectional curvature are maximally symmetric in the sense that they can lodge the highest possible number of Killing vectors [36]. Their curvature tensor are completely specified by the scalar curvature R, which is constant throughout spacetime. Minkowski M, with vanishing curvature, is the simplest one. Its kinematic group is the Poincaré group \({\mathcal {P}} = {\mathcal {L}} \oslash {{\mathcal {T}}}\), the semi-direct product of Lorentz (\({\mathcal {L}}\)) and the translation (\({{\mathcal {T}}}\)) groups. It is a homogeneous space under the Lorentz group:

$$\begin{aligned} M = {\mathcal {P}}/{\mathcal {L}}. \end{aligned}$$

The Lorentz subgroup provides an isotropy around a given point of M, and the translation symmetry enforces this isotropy around any other point. This is the meaning of homogeneity: all points of Minkowski spacetime are equivalent under spacetime translations. That is to say, Minkowski is transitive under spacetime translations.

Another example of maximally symmetric spacetime is the de Sitter space dS. It has non-vanishing sectional curvature, and \(\textit{SO}(4,1)\) as kinematic group. Furthermore, it is also homogeneous under the Lorentz group:

$$\begin{aligned} \textit{dS} = \textit{SO}(4,1) / {\mathcal {L}}. \end{aligned}$$

Like Minkowski, the Lorentz subgroup provides an isotropy around a given point of dS. The notion of homogeneity, however, is completely different: as one can see from the generators (18) or (42), all points of the de Sitter spacetime are equivalent under a combination of translation and proper conformal transformation—the so-called de Sitter “translations”. That is to say, de Sitter is transitive under a combination of translations and proper conformal transformations: in order to move from one point to any other point of a de Sitter spacetime, one has to perform a de Sitter “translation”. This is the meaning of transitivity.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Araujo, A., Jennen, H., Pereira, J.G. et al. On the spacetime connecting two aeons in conformal cyclic cosmology. Gen Relativ Gravit 47, 151 (2015). https://doi.org/10.1007/s10714-015-1991-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-015-1991-4

Keywords

Navigation