Skip to main content
Log in

Non-minimal derivative coupling gravity in cosmology

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We give a brief review of the non-minimal derivative coupling (NMDC) scalar field theory in which there is non-minimal coupling between the scalar field derivative term and the Einstein tensor. We assume that the expansion is of power-law type or super-acceleration type for small redshift. The Lagrangian includes the NMDC term, a free kinetic term, a cosmological constant term and a barotropic matter term. For a value of the coupling constant that is compatible with inflation, we use the combined WMAP9 (WMAP9 + eCMB + BAO + \(H_0\)) dataset, the PLANCK + WP dataset, and the PLANCK TTTEEE + lowP + Lensing + ext datasets to find the value of the cosmological constant in the model. Modeling the expansion with power-law gives a negative cosmological constants while the phantom power-law (super-acceleration) expansion gives positive cosmological constant with large error bar. The value obtained is of the same order as in the \(\Lambda \)CDM model, since at late times the NMDC effect is tiny due to small curvature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Amanullah, R., et al.: Astrophys. J. 716, 712 (2010)

    Article  ADS  Google Scholar 

  2. Astier, P., et al.: (SNLS Collaboration): Astron Astrophys. 447, 31 (2006)

    ADS  Google Scholar 

  3. Goldhaber, G., et al.: Astrophys. J. 558, 359 (2001)

    Article  ADS  Google Scholar 

  4. Perlmutter, S., et al.: (Supernova Cosmology Project Collaboration): Nature 391, 51 (1998)

    ADS  Google Scholar 

  5. Perlmutter, S., et al.: (Supernova Cosmology Project Collaboration): Astrophys. J. 517, 565 (1999)

    ADS  Google Scholar 

  6. Riess, A.G., et al.: (Supernova Search Team Collaboration): Astron. J. 116, 1009 (1998)

    ADS  Google Scholar 

  7. Riess, A.G.: arXiv:astro-ph/9908237

  8. Riess, A.G., et al.: (Supernova Search Team Collaboration): Astrophys. J. 607, 665 (2004)

    ADS  Google Scholar 

  9. Riess, A.G., et al.: Astrophys. J. 659, 98 (2007)

    Article  ADS  Google Scholar 

  10. Tonry, J.L., et al.: (Supernova Search Team Collaboration): Astrophys. J. 594, 1 (2003)

    ADS  Google Scholar 

  11. Scranton, R., et al. (SDSS Collaboration): arXiv:astro-ph/0307335

  12. Tegmark, K., et al.: (SDSS Collaboration): Phys. Rev. D 69, 103501 (2004)

    ADS  Google Scholar 

  13. Larson, D., et al.: Astrophys. J. Suppl. 192, 16 (2011)

    Article  ADS  Google Scholar 

  14. Komatsu, E., et al.: (WMAP Collaboration): Astrophys. J. Suppl. 192, 18 (2011)

    ADS  Google Scholar 

  15. Hu, J.W., Cai, R.G., Guo, Z.K., Hu, B.: JCAP 1405, 020 (2014)

    Article  ADS  Google Scholar 

  16. Masi, S., et al.: Prog. Part. Nucl. Phys. 48, 243 (2002)

    Article  ADS  Google Scholar 

  17. Allen, S.W., et al.: Mon. Not. Roy. Astron. Soc. 353, 457 (2004)

    Article  ADS  Google Scholar 

  18. Rapetti, D., Allen, S.W., Weller, J.: Mon. Not. Roy. Astron. Soc. 360, 555 (2005)

    Article  ADS  Google Scholar 

  19. Copeland, E.J., Sami, M., Tsujikawa, S.: Int. J. Mod. Phys. D 15, 1753 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. Padmanabhan, T.: Curr. Sci. 88, 1057 (2005)

    ADS  Google Scholar 

  21. Padmanabhan, T.: AIP Conf. Proc. 861, 179 (2006)

    Article  ADS  Google Scholar 

  22. Amendola, L., Tsujikawa, S.: Dark Energy: Theory and Observations. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  23. Caldwell, R.R., Dave, R., Steinhardt, P.J.: Phys. Rev. Lett. 80, 1582 (1998)

    Article  ADS  Google Scholar 

  24. Chiba, T., Okabe, T., Yamaguchi, M.: Phys. Rev. D 62, 023511 (2000)

    Article  ADS  Google Scholar 

  25. Armendariz-Picon, C., Mukhanov, V.F., Steinhardt, P.J.: Phys. Rev. Lett. 85, 4438 (2000)

    Article  ADS  Google Scholar 

  26. Armendariz-Picon, C., Mukhanov, V.F., Steinhardt, P.J.: Phys. Rev. D 63, 103510 (2001)

    Article  ADS  Google Scholar 

  27. De Felice, A., Tsujikawa, S.: Liv. Rev. Rel. 13, 3 (2010)

    Google Scholar 

  28. Carroll, S.M., Duvvuri, V., Trodden, M., Turner, M.S.: Phys. Rev. D 70, 043528 (2004)

    Article  ADS  Google Scholar 

  29. Brans, C., Dicke, R.H.: Phys. Rev. D 124, 925 (1961)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. Dirac, P.A.M.: Proc. Roy. Soc. A338, 439 (1974)

    Article  ADS  Google Scholar 

  31. Birrel, N.D., Davies, P.C.W.: Quantum Fields in Curved Spaces. Cambridge University Press, Cambridge (1982)

    Book  Google Scholar 

  32. Zee, A.: Phys. Rev. Lett. 42, 417 (1979)

    Article  ADS  Google Scholar 

  33. Applequist, T., Chodos, A.: Phys. Rev. Lett. 50, 141 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  34. Randjbar-Daemi, S., Salam, A., Strathdee, J.: Phys. Lett. B 135, 388 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  35. Accetta, F.S., Zoller, D.J., Turner, M.S.: Phys. Rev. D 31, 3046 (1985)

    Article  ADS  Google Scholar 

  36. Maeda, K.: Class. Quant. Grav. 3, 233 (1986)

    Article  ADS  MATH  Google Scholar 

  37. Futamase, T., Maeda, K.: Phys. Rev. D 39, 399 (1989)

    Article  ADS  Google Scholar 

  38. Kasper, U.: Nuovo Cimento 103, 291 (1989)

    Article  Google Scholar 

  39. La, D., Steinhardt, P.J.: Phys. Rev. Lett. 62, 376 (1989)

    Article  ADS  Google Scholar 

  40. Accetta, F.S., Trester, J.J.: Phys. Rev. D 39, 2854 (1989)

    Article  ADS  Google Scholar 

  41. Wang, Y.: Phys. Rev. D 42, 2541 (1990)

    Article  ADS  Google Scholar 

  42. Amendola, L., Capozziello, S., Litterio, M., Occhionero, F.: Phys. Rev. D 45, 417 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  43. Amendola, L., Bellisai, D., Occhionero, F.: Phys. Rev. D 47, 4267 (1993)

    Article  ADS  Google Scholar 

  44. Chiba, T.: Phys. Rev. D 60, 083508 (1999)

    Article  ADS  Google Scholar 

  45. Uzan, J.-P.: Phys. Rev. D 59, 123510 (1999)

    Article  ADS  Google Scholar 

  46. Holden, D.J., Wands, D.: Phys. Rev. D 61, 043506 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  47. Easson, D.A.: JCAP 0702, 004 (2007)

    Article  ADS  Google Scholar 

  48. Amendola, L.: Phys. Rev. D 60, 043501 (1999)

    Article  ADS  Google Scholar 

  49. Capozziello, S., de Ritis, R.: Gen. Relativ. Gravit. 29, 1425 (1997)

    Article  ADS  MATH  Google Scholar 

  50. Amendola, L.: Phys. Lett. B 301, 175 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  51. Liu, H., Tseytlin, A.A.: Nucl. Phys. B 533, 88 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  52. Nojiri, S., Odintsov, S.D.: Phys. Lett. B 444, 92 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  53. Magnano, G., Ferraris, F., Francaviglia, M.: Gen. Relativ. Gravit. 19, 465 (1987)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  54. Hinshaw, G., et al. (WMAP Collaboration): Cosmological Parameter Results,” arXiv:1212.5226 [astro-ph.CO]

  55. Ade, P. A. R., et al. (Planck Collaboration): arXiv:1303.5076 [astro-ph.CO]

  56. Ade, P. A. R. et al. [Planck Collaboration]: arXiv:1502.01589 [astro-ph.CO]

  57. Capozziello, S., Lambiase, G., Schmidt, H.J.: Annalen Phys. 9, 39 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  58. Capozziello, S., Lambiase, G.: Gen. Relativ. Gravit. 31, 1005 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  59. Granda, L.N.: Rev. Col. Fís. 42, 257 (2010)

    Google Scholar 

  60. Daniel, S.F., Caldwell, R.R.: Class. Quant. Grav. 24, 5573 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  61. Granda, L.N.: JCAP 1007, 006 (2010)

    Article  ADS  Google Scholar 

  62. Donoghue, J.F.: Phys. Rev. D 50, 3874 (1994)

    Article  ADS  Google Scholar 

  63. Granda, L.N., Cardona, W.: JCAP 1007, 021 (2010)

    Article  ADS  Google Scholar 

  64. Granda, L.N.: Class. Quant. Grav. 28, 025006 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  65. Granda, L.N.: JCAP 1104, 016 (2011)

    Article  ADS  Google Scholar 

  66. Granda, L.N.: Mod. Phys. Lett. A 27, 1250018 (2012)

    Article  ADS  Google Scholar 

  67. Granda, L.N., Torrente-Lujan, E., Fernandez-Melgarejo, J.J.: Eur. Phys. J. C 71, 1704 (2011)

    Article  ADS  Google Scholar 

  68. Sushkov, S.V.: Phys. Rev. D 80, 103505 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  69. Saridakis, E.N., Sushkov, S.V.: Phys. Rev. D 81, 083510 (2010)

    Article  ADS  Google Scholar 

  70. Gao, C.: JCAP 1006, 023 (2010)

    Article  ADS  Google Scholar 

  71. Germani, C., Kehagias, A.: Phys. Rev. Lett. 106, 161302 (2011)

    Article  ADS  Google Scholar 

  72. Feng, K., Qiu, T.: Phys. Rev. D 90(12), 123508 (2014)

    Article  ADS  Google Scholar 

  73. Gubitosi, G., Linder, E.V.: Phys. Lett. B 703, 113 (2011)

    Article  ADS  Google Scholar 

  74. Bruneton, J.P., Rinaldi, M., Kanfon, A., Hees, A., Schlogel, S., Fuzfa, A.: Adv. Astron. 2012, 430694 (2012)

    Article  ADS  Google Scholar 

  75. Chen, S., Jing, J.: Phys. Lett. B 691, 254 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  76. Chen, S., Jing, J.: Phys. Rev. D 82, 084006 (2010)

    Article  ADS  Google Scholar 

  77. Ding, C., Liu, C., Jing, J., Chen, S.: JHEP 1011, 146 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  78. Kolyvaris, T., Koutsoumbas, G., Papantonopoulos, E., Siopsis, G.: Class. Quant. Grav. 29, 205011 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  79. Skugoreva, M.A., Sushkov S.V., Toporensky, A.V.: Phys. Rev. D 88, (2013) 083539. [Phys. Rev. D 88, no. 10, (2013) 109906 Erratum]

  80. Sushkov, S.V.: Phys. Rev. D 85, 123520 (2012)

    Article  ADS  Google Scholar 

  81. Koutsoumbas, G., Ntrekis, K., Papantonopoulos, E.: JCAP 1308, 027 (2013)

    Article  ADS  Google Scholar 

  82. Darabi, F., Parsiya, A.: arXiv:1312.1322 [gr-qc]

  83. Germani, C., Kehagias, A.: JCAP 0903, 028 (2009)

    Article  ADS  Google Scholar 

  84. Germani, C., Kehagias, A.: Phys. Rev. Lett. 105, 011302 (2010)

    Article  ADS  Google Scholar 

  85. Germani, C., Watanabe, Y.: JCAP 1107, 031 (2011)

    Article  ADS  Google Scholar 

  86. Sadjadi, H.M., Goodarzi, P.: JCAP 1302, 038 (2013)

    Article  MathSciNet  Google Scholar 

  87. Tsujikawa, S.: Phys. Rev. D 85, 083518 (2012)

    Article  ADS  Google Scholar 

  88. Ema, Y., Jinno, R., Mukaida, K., Nakayama, K.: arXiv:1504.07119 [gr-qc]

  89. Ghalee, A.: arXiv:1402.6798 [astro-ph.CO]

  90. Yang, N., Gao, Q., Gong, Y.: arXiv:1504.05839 [gr-qc]

  91. Myung, Y. S., Moon, T. and Lee, B. H.: arXiv:1505.04027 [gr-qc]

  92. Sadjadi, H.M.: Phys. Rev. D 83, 107301 (2011)

    Article  ADS  Google Scholar 

  93. Sadjadi, H.M., Goodarzi, P.: Phys. Lett. B 732, 278 (2014)

    Article  ADS  Google Scholar 

  94. Sadjadi, H.M.: Gen. Relativ. Gravit. 46(11), 2014 (1817)

    MathSciNet  Google Scholar 

  95. Jinno, R., Mukaida, K., Nakayama, K.: JCAP 1401(01), 031 (2014)

    Article  ADS  Google Scholar 

  96. Dent, J.B., Dutta, S., Saridakis, E.N., Xia, J.Q.: JCAP 1311, 058 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  97. Huang, Y., Gao, Q., Gong, Y.: Eur. Phys. J. C 75(4), 143 (2015)

    Article  ADS  Google Scholar 

  98. Sethi, G., Dev, A., Jain, D.: Phys. Lett. B 624, 135 (2005)

    Article  ADS  Google Scholar 

  99. Kumar, S.: Mon. Not. Roy. Astron. Soc. 422, 2532 (2012)

    Article  ADS  Google Scholar 

  100. Gumjudpai, B., Thepsuriya, K.: Astrophys. Space Sci. 342, 537 (2012)

    Article  ADS  Google Scholar 

  101. Gumjudpai, B.: Mod. Phys. Lett. A 28, 1350122 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  102. Rani, S., Altaibayeva, A., Shahalam, M., Singh, J.K., Myrzakulov, R.: JCAP 1503(03), 031 (2015)

    Article  ADS  Google Scholar 

  103. Lucchin, F., Matarrese, S.: Phys. Rev. D 32, 1316 (1985)

    Article  ADS  Google Scholar 

  104. Dev, A., Safonova, M., Jain, D., Lohiya, D.: Phys. Lett. B 548, 12 (2002)

    Article  ADS  MATH  Google Scholar 

  105. Jain, D., Dev, A., Alcaniz, J.S.: Class. Quan. Grav. 20, 4163 (2003)

    Article  MathSciNet  Google Scholar 

  106. Zhu, Z.H., Hu, M., Alcaniz, J.S., Liu, Y.X.: Astron. Astrophys. 483, 15 (2008)

    Article  ADS  Google Scholar 

  107. Coles, P., Lucchin, F.: Cosmology: The Origin and Evolution of Cosmic Structure, 2nd edn. Wiley, Chichester (2002)

    Google Scholar 

  108. Caldwell, R.R.: Phys. Lett. B 545, 23 (2002)

    Article  ADS  Google Scholar 

  109. Caldwell, R.R., Kamionkowski, M., Weinberg, N.N.: Phys. Rev. Lett. 91, 071301 (2003)

    Article  ADS  Google Scholar 

  110. Kaeonikhom, C., Gumjudpai, B., Saridakis, E.N.: Phys. Lett. B 695, 45 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We thank the reviewers for useful comments. B. G. is supported by National Research Council of Thailand (Grant No. R2557B072). B.G. is also sponsored via the Abdus Salam ICTP Junior Associateship scheme which supports his visit to ICTP where this work was partially completed. P. R. is funded via the TRF’s Royal Golden Jubilee Doctoral Scholarship (Grant No. PHD/0040/2553).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Burin Gumjudpai.

Appendices

Appendix 1: Equation of state parameter for power-law case

In this part, we apply the power-law expansion \( a = a_0 \left({t}/{t_0}\right)^\alpha \) to the NMDC cosmology. The equation of state parameter in Eq. (11) takes the form

$$\begin{aligned} w_\phi =\frac{\dot{\phi }^2(t^2 - 9\kappa \alpha ^2)\left[1 - \frac{2\kappa \alpha (t^2 + 9\kappa \alpha ^2)}{(t^2 - 3\kappa \alpha ^2)(t^2 - 9\kappa \alpha ^2)}\right] - \frac{4\kappa \alpha \dot{\phi }V_{,\phi }t^3}{t^2 - 3\kappa \alpha ^2} - 2V(\phi )t^2}{\dot{\phi }^2(t^2 - 3\kappa \alpha ^2) + 2V(\phi )t^2}. \end{aligned}$$
(24)

Eq. (18) takes the form,

$$\begin{aligned} \dot{\phi }^2 = \frac{F_1(t, \phi , \dot{\phi })}{(t^2 - 9\kappa \alpha ^2)}. \end{aligned}$$
(25)

Substituting Eq. (25) into the equation of state parameter, Eq. (24), we obtain

$$\begin{aligned} w_\phi = \frac{ F_1(t, \phi , \dot{\phi }) \left[1 - \frac{2\kappa \alpha (t^2 + 9\kappa \alpha ^2)}{(t^2 - 3\kappa \alpha ^2)(t^2 - 9\kappa \alpha ^2)}\right] - \frac{4\kappa \alpha V_{,\phi }\dot{\phi }t^3}{(t^2 - 3\kappa \alpha ^2)} - 2V(\phi )t^2}{ F_1(t, \phi , \dot{\phi }) + 2V(\phi )t^2} \end{aligned}$$
(26)

where

$$\begin{aligned} F_1(t, \phi , \dot{\phi }) = \frac{\frac{2\kappa \alpha V_{,\phi }\dot{\phi }t^3}{(t^2 - 9\kappa \alpha ^2)} \,-\, \rho _\mathrm{m,0}\frac{t_0^{3\alpha }}{(t^{3\alpha - 2})} \,+\, \frac{\alpha }{(4\pi G)}}{1 - \frac{\kappa \alpha (t^2+9\kappa \alpha ^2)}{(t^2 - 3\kappa \alpha ^2)(t^2 - 9\kappa \alpha ^2)}} \end{aligned}$$
(27)

Appendix 2: Equation of state parameter for phantom power-law case

Apply the phantom power-law expansion (super-acceleration), \( a = a_0\big [(t_\mathrm{s} - t)/\) \((t_\mathrm{s} - t_0)\big ]^\beta , \) The kinetic term can be written as

$$\begin{aligned} \dot{\phi }^2 = - \frac{F_2(t, \phi , \dot{\phi })}{\left[(t_\mathrm{s} - t)^2 + 9\kappa \beta ^2\right]} \end{aligned}$$
(28)

The equation of state parameter of a phantom power-law expansion is

$$\begin{aligned} w_\phi = \frac{ F_2(t, \phi , \dot{\phi }) \left[1+ \frac{2\kappa \beta \left[(t_\mathrm{s} - t)^2 - 9\kappa \beta ^2\right]}{\left[(t_\mathrm{s} - t)^2 + 3\kappa \beta ^2\right]\left[(t_\mathrm{s} - t)^2 + 9\kappa \beta ^2\right]}\right] - \frac{4\kappa \beta V_{,\phi }\dot{\phi }(t_\mathrm{s} - t)^3}{\left[(t_\mathrm{s} - t)^2 + 3\kappa \beta ^2\right]} - 2V(\phi )(t_\mathrm{s} - t)^2}{ F_2(t, \phi , \dot{\phi }) + 2V(\phi )(t_\mathrm{s} - t)^2}\nonumber \\ \end{aligned}$$
(29)

where

$$\begin{aligned} F_2(t, \phi , \dot{\phi }) = \frac{\frac{2\kappa \beta V_{,\phi }\dot{\phi }(t_\mathrm{s} - t)^3}{(t_\mathrm{s} - t)^2 + 3\kappa \beta ^2} - \rho _\mathrm{m,0}\frac{(t_\mathrm{s} - t_0)^{3\beta }}{(t_\mathrm{s} - t)^{3\beta - 2}} + \frac{\beta }{4\pi G}}{1 + \frac{\kappa \beta \left[(t_\mathrm{s} - t)^2 - 9\kappa \beta ^2\right]}{ \left( \left[(t_\mathrm{s} - t)^2 + 3\kappa \beta ^2\right]\left[(t_\mathrm{s} - t)^2 + 9\kappa \beta ^2\right] \right) } } \end{aligned}$$
(30)

With constant potential in form of \( V(\phi ) = {\Lambda }/{8\pi G} \) hence \( V_{, \phi } = 0\) for both cases.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gumjudpai, B., Rangdee, P. Non-minimal derivative coupling gravity in cosmology. Gen Relativ Gravit 47, 140 (2015). https://doi.org/10.1007/s10714-015-1985-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-015-1985-2

Keywords

Navigation