Skip to main content
Log in

Geodesic family of spherical instantons and cosmic quantum creation

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

The Einstein field equations for any spherically symmetric metric and a geodesic perfect fluid source are cast in a canonical simple form, both for Lorentzian metrics and for instantons. Both kinds of metrics are explicitly written for the Lemaître–Tolman–Bondi family and for a general \(\varLambda \)-Friedmann–Lemaître–Robertson–Walker universe. In the latter case (including of course the instanton version) we study whether the probability of quantum creation of our Universe vanishes or not. It is found, in accordance with previous results, that only the closed model can have a nonzero probability for quantum creation. To obtain this result, we resort to general assumptions, which are satisfied in the particular creation case considered by Vilenkin. On the other hand, Fomin and Tryon suggested that the energy of a quantically creatable universe should vanish. This is in accordance with the above result in which only the closed \(\varLambda \)FLRW model is quantically creatable while the open and flat models are not. That is so since it can be seen that this closed model has vanishing energy while the open model and the limiting flat case (suitably perturbed) have both infinite energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. In the case \(A'=0\), the integration of the corresponding Einstein equations leads to a generalization of the well known Datt solution (see [18] and related references quoted therein) and its corresponding instanton.

  2. Notice that, according to (17), an instanton with \(k=-1\) is a closed space, i.e., \(\rho \in (0,1)\). Actually, since for an instanton, it is \(\epsilon = +1\), the function \(1+\epsilon k \rho ^2\) in (17) becomes then \(1 - \rho ^2\). Similarly, an instanton with \(k = +1\) is an open space: \(1+\epsilon k \rho ^2\) becomes \(1 + \rho ^2\) and \(\rho \in (0, + \infty )\).

  3. Notice that, both in the closed and open FLRW models, \(\dot{a}(t)|_{t=0}\) unavoidably diverges because of the physical singularity present in \(t=u=0\). Nevertheless, as stated above, the corresponding extended Darmois condition is written as \(\dot{a}(t)|_{t=0} - \dot{a}_{E}(u)|_{u=0} = 0\), indicating that, for \(u=0\), \(\dot{a}_{E}(u)|_{u=0}\) diverges in the suitable way to make this difference vanish.

  4. No privileged family of cosmic observers exists in the de Sitter space-time (because it is “empty”) but there exist three different families of Gaussian observers admitting orthogonal hypersurface of constant curvature, and then three different metric forms (closed, flat or open) for the three-space line element expressed in the respective comoving coordinates. Of course, there also exist static (non Gaussian) observers having associated the de Sitter static metric form (see, for instance, [28]). Here, we are considering the closed de Sitter universe, that is, the metric form that result by adapting coordinates to a family of Gaussian observers admitting orthogonal three-spaces of constant positive curvature.

  5. Notice that we do not include boundary surface terms in the action. In fact, the Einstein field equations (both, for Lorentzian and Euclidean metrics \(g_{\alpha \beta }\)) follow when the functional action remains stationary Footnote 5 continued

    under variations of the metric field, \(\delta g_{\alpha \beta }\), and its derivatives, \(\delta (\partial _\gamma g_{\alpha \beta })\), which vanish on the three-boundary of the considered variational four-dimensional domain. For an extensive account of these boundary terms (that have to be included in the action in order to derive the Einstein field equations under arbitrary metric derivatives variations, \(\delta (\partial _\gamma g_{\alpha \beta })\)) see, for instance, [3032].

References

  1. Vilenkin, A.: Phys. Lett. 117B, 25 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  2. Vilenkin, A.: Phys. Rev. D 27, 2848 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  3. Vilenkin, A.: Phys. Rev. D 30, 509 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  4. Vilenkin, A.: Phys. Rev. D 32, 2511 (1985)

    Article  MathSciNet  ADS  Google Scholar 

  5. Zel’dovich, Ya.B, Starobinskiǐ, A.A.: Sov. Astron. Lett. 10, 135 (1984)

  6. Hartle, J.B., Hawking, S.W.: Phys. Rev. D 28, 2960 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  7. Zeh, H.D.: Phys. Lett. A 126, 311 (1988)

    Article  ADS  Google Scholar 

  8. Linde, A.D.: Lett. Nuov. Cim. 39, 401 (1984)

    Article  ADS  Google Scholar 

  9. Linde, A.D.: Sov. Phys. JETP 60, 211 (1984)

    Google Scholar 

  10. Vilenkin, A.: AIP Conf. Proc. 478, 23 (1999)

    ADS  Google Scholar 

  11. Kolb, E.W., Turner, M.S.: The Early Universe (Frontiers in Physics, 1990), epigraph 11.3

  12. Atkatz, D., Pagels, H.: Phys. Rev. D 25, 2065 (1982)

    Article  ADS  Google Scholar 

  13. Da̧browski, M.P., Larsen, A.L.: Phys. Rev. D 52, 3424 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  14. Ellis, G.F.R.: Gen. Relativ. Gravit. 24, 1047 (1992)

    Article  ADS  MATH  Google Scholar 

  15. Hellaby, C., Sumeruk, A., Ellis, G.F.R.: Int. J. Mod. Phys. D 6, 211 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. Ellis, G., Sumeruk, A., Coule, D., Hellaby, C.: Class. Quantum Grav. 9, 1535 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. Lapiedra, R., Morales-Lladosa, J.A.: J. Phys. Conf. Ser. 600, 012020 (2015)

    Article  ADS  Google Scholar 

  18. Plebański, J., Krasiński, A.: An Introduction to General Relativity and Cosmology. Cambridge University Press, Cambridge (2006)

    Book  MATH  Google Scholar 

  19. Lemaître, G.: Ann. Soc. Sci. Bruxelles A 53, 5 (1933). English translation, with historical comments. Gen. Relativ. Gravit. 29, 637 (1997)

  20. Tolman, R.C.: Proc. Nat. Acad. Sci. USA 20, 169 (1934). Reprinted, with historial comments. Gen. Relativ. Gravit. 29, 935 (1997)

  21. Bondi, H.: Mon. Not. R. Astr. Soc. 107, 410 (1949). Reprinted, with historial comments. Gen. Relativ. Gravit. 31, 1777 (1999)

  22. Landau, L., Lifchitz, E. M.: The Classical Theory of Fields, Elsevier, Amsterdam, Fourth ed., 1975. Reprinted (2007)

  23. Hellaby, C., Dray, T.: Phys. Rev. D 49, 5096 (1994)

    Article  MathSciNet  ADS  Google Scholar 

  24. Hayward, S.A.: Phys. Rev. D 52, 7331 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  25. Hellaby, C., Dray, T.: Phys. Rev. D 52, 7333 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  26. Gibbons, G.W., Hartle, J.B.: Phys. Rev. D 42, 2458 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  27. Martin, J.: Phys. Rev. D 52, 6708 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  28. Robertson, H.P., Noonan, T.W.: Relativity and Cosmology, p. 250. W. B. Saunders Company, Philadeiphia (1969)

    Google Scholar 

  29. Hawking, S.W., Ellis, G.F.R.: The Large Scale Structure of the Space-time. Cambridge University Press, Cambridge (1973)

    Book  MATH  Google Scholar 

  30. Hawking, S.W., Hunter, C.J.: Class. Quantum Grav. 13, 2735 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  31. Poisson, E.: A Relativistic Toolkit, The mathematics of Black Hole Mechanics. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  32. Guarnizo, A., Castañeda, L., Tejeiro, J.M.: Gen. Relativ. Gravit. 42, 2713 (2010)

    Article  ADS  MATH  Google Scholar 

  33. Barrow, J.D.: Class. Quantum Grav. 10, 1579 (1993)

    Article  ADS  Google Scholar 

  34. Bervinsky, A.O.: Phys. Rev. Lett. 99, 071301 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  35. Bervinsky, A.O., Kamenshchik, A.Yu., Kiefer, C., Steinwachs, Ch.F.: Phys. Rev. D 81, 043530 (2010)

  36. Gurzadyan, V.G., Kocharyan, A.A.: Sov. Phys. JETP 68, 1 (1989)

    MathSciNet  ADS  Google Scholar 

  37. Lapiedra, R., Morales-Lladosa, J.A.: Gen. Relativ. Gravit. 44, 367 (2012)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  38. Lapiedra, R., Morales-Lladosa, J.A.: Gen. Relativ. Gravit. 45, 1145 (2013)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  39. Ferrando, J.J., Lapiedra, R., Morales, J.A.: Phys. Rev. D 75, 124003 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  40. Lapiedra, R., Sáez, D.: Phys. Rev. D 77, 104011 (2008)

    Article  ADS  Google Scholar 

  41. Fomin, P.I.: Gravitational instability of vacuum and the cosmological problem. Preprint ITP-73-137P (1973). English version printed In: Problems of Atomic Science and Technology 2013, N3 (85). Series: Nuclear Physics Investigations (60), pp. 6–9. A published version of this preprint appeared in Dok. Akad. Nauk. SSSR 9A, 831 (1975)

  42. Tryon, E.P.: Nature 246, 396 (1973)

    Article  ADS  Google Scholar 

  43. Guth, A.H.: The Inflationary Universe: The Quest for a New Theory of Cosmic Origins. Perseus Books (1997)

  44. Weinberg, S.: Gravitation and Cosmology. Wiley, London (1972)

    Google Scholar 

  45. Rindler, W.: Relativity: Special, General and Cosmological, 2nd edn. Oxford University Press, Oxford (2006)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Spanish “Ministerio de Economía y Competitividad”, MICINN-FEDER project FIS2012-33582. Useful discussions with J. Navarro-Salas are pleasingly recognized.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Antonio Morales-Lladosa.

Appendices

Appendix 1: Isotropic instanton and “conservation equations”, \(\nabla \cdot {T} = 0\)

Let \(V_4\) be a four-dimensional manifold and g a metric on \(V_4\) whose signature is \((\epsilon , +, +, +)\), with \(\epsilon = -1\) (Lorentzian case) or \(\epsilon = 1\) (Euclidean case) and let us consider an isotropic stress-energy tensor T (see [14])

$$\begin{aligned} T = \mu \, n \otimes n + p \, \gamma , \end{aligned}$$
(63)

where \(\gamma \equiv g - \epsilon \, n \otimes n\),   \(n^2 \equiv g(n, n) = \epsilon \), and

$$\begin{aligned} \lambda _s \equiv \epsilon \, \mu , \qquad \lambda _t \equiv p, \end{aligned}$$
(64)

with \(\lambda _s\) (\(\lambda _t\)) the simple (triple) eigenvalue of T,

$$\begin{aligned} T(n) = \epsilon \, \mu \, n, \quad T(v) = p \, v \end{aligned}$$
(65)

for any vector v ortogonal to n, \(g(n,v) = 0\). Then

$$\begin{aligned} T = \epsilon \, (\lambda _s - \lambda _t) \, n \otimes n + \lambda _t \, g = (\mu - \epsilon \, p) \, n \otimes n + p \, g, \end{aligned}$$
(66)

that, in the Lorentzian case, is the expression for the stress-energy tensor of a perfect fluid,

$$\begin{aligned} T_{L} = (\mu + p) \, n \otimes n + p \, g, \end{aligned}$$
(67)

and, in the Euclidean case, it becomes

$$\begin{aligned} T_{E} = (\mu - p) \, n \otimes n + p \, g, \end{aligned}$$
(68)

describing the “stresses” associated to an instanton field.

For a conserved T, \(\nabla \cdot T =0\), the divergence of (63) gives

$$\begin{aligned} \nabla _\alpha T^{\alpha \beta }= & {} u^{\alpha } \partial _\alpha (\mu - \epsilon p) \, n^{\beta } \nonumber \\&+ (\mu - \epsilon p) [\theta \, n^{\beta } + a^{\beta }] + (\partial _\rho p) \, g^{\rho \beta } = 0, \end{aligned}$$
(69)

with \(\theta \equiv \nabla _\alpha n^{\alpha }\), \(a^{\beta } \equiv n^{\alpha } \nabla _\alpha n^{\beta }\), whose decomposition in parts parallel and orthogonal to \(n^{\alpha }\) leads to

$$\begin{aligned} \dot{\mu } = - (\mu - \epsilon p) \, \theta , \end{aligned}$$
(70)

and

$$\begin{aligned} (\mu - \epsilon p) \, a_\beta = - \partial _\beta p + \epsilon \, \dot{p} \, n_\beta , \end{aligned}$$
(71)

respectively, where the dot denotes derivation along \(n^{\alpha }\).

Appendix 2: Spherically symmetric Einstein equations for both instantons and Lorentzian solutions with geodesic perfect flows

The material in this appendix can be found in most relativity textbooks that mainly deal with the Lorentzian case (see for example [18]). The case of a general diagonal metric is considered in [45]. This material is included here for sake of completeness and in order to be precise about the sign conventions we use.

To begin with, we take for the Riemann tensor definition of \((V_4, g)\)

$$\begin{aligned} R^{\alpha }_{\,\, \beta \mu \nu } = \partial _\mu \varGamma ^{\alpha }_{\nu \beta } - \partial _\nu \varGamma ^{\alpha }_{\mu \beta } + \varGamma ^{\alpha }_{\mu \lambda } \varGamma ^\lambda _{\nu \beta } - \varGamma ^{\alpha }_{\nu \lambda } \varGamma ^\lambda _{\mu \beta }, \end{aligned}$$
(72)

and for the Ricci tensor

$$\begin{aligned} R_{\mu \nu } = R^{\alpha }_{\,\,\mu \alpha \nu }. \end{aligned}$$
(73)

If the metric \(V_4\) is spherically symmetric, in a Gauss coordinate system, \(\{u, \rho , \theta , \phi \}\), adapted to the symmetry the line element is written as:

$$\begin{aligned} \hbox {d}s^2 = \epsilon \,\hbox {d}u^2 + B(u, \rho )\,\hbox {d}\rho ^2 + C(u, \rho )\, \hbox {d}\sigma ^2, \end{aligned}$$
(74)

where \(\hbox {d}\sigma ^2 = \hbox {d}\theta ^2 + \sin ^2 \theta \, \hbox {d}\phi ^2\) stands for the metric on the unit two-sphere. According to the sign conventions (72) and (73), the essential components of the Ricci tensor in these coordinates are given by:

$$\begin{aligned} R_{uu}= & {} - \frac{\ddot{B}}{2B} - \frac{\ddot{C}}{C} + \frac{\dot{B}^2}{4B^2} + \frac{\dot{C}^2}{2C^2}, \end{aligned}$$
(75)
$$\begin{aligned} R_{\rho \rho }= & {} - \frac{\epsilon }{2} \left( \ddot{B} - \frac{\dot{B}^2}{2B} + \frac{\dot{B} \dot{C}}{C}\right) + \frac{1}{C} \left( - C'' + \frac{C'^2}{2C} + \frac{B' C'}{2 B} \right) , \end{aligned}$$
(76)
$$\begin{aligned} R_{\theta \theta }= & {} - \frac{\epsilon }{2} \left( \ddot{C} + \frac{\dot{B} \dot{C}}{2B}\right) - \frac{1}{2B}\left( C'' - \frac{B' C'}{2B} \right) +1,\end{aligned}$$
(77)
$$\begin{aligned} R_{\phi \phi }= & {} R_{\theta \theta } \sin ^2 \theta , \end{aligned}$$
(78)
$$\begin{aligned} R_{u\rho }= & {} \frac{1}{C} \left( - \dot{C}' + \frac{\dot{C} C'}{2C} + \frac{\dot{B} C'}{2B}\right) , \end{aligned}$$
(79)

the remaining components being identically zero by virtue of the assumed symmetry.

The Einstein field equations

$$\begin{aligned} Ric(g) - \frac{R}{2} g + \varLambda g = \kappa T, \quad \kappa \equiv 8 \pi G, \end{aligned}$$
(80)

are written in equivalent form as

$$\begin{aligned} Ric(g) = \kappa T + (\varLambda - \frac{\kappa }{2} \mathrm{tr} T) \, g. \end{aligned}$$
(81)

Then for an isotropic source T given by (63), Eq. (81) becomes

$$\begin{aligned} Ric(g) = \epsilon [\varLambda + \frac{\kappa }{2} (\lambda _s - 3 \lambda _t)] \, n \otimes n + [\varLambda - \frac{\kappa }{2} (\lambda _s - \lambda _t)] \, \gamma . \end{aligned}$$
(82)

When the field n is geodesic, that is, when \(\partial _\rho p =0\), adapting Gauss coordinates \((u, \rho , \theta , \phi )\) so that \(n= \epsilon \, \hbox {d}u = (\epsilon , 0, 0, 0)\), the Einstein equations are:

$$\begin{aligned}&- \frac{\ddot{B}}{2B} - \frac{\ddot{C}}{C} + \frac{\dot{B}^2}{4B^2} + \frac{\dot{C}^2}{2C^2} = \epsilon \, [ \varLambda + \frac{\kappa }{2} (\lambda _s - 3 \lambda _t)],\end{aligned}$$
(83)
$$\begin{aligned}&- \frac{\epsilon }{2} \left( \ddot{B} - \frac{\dot{B}^2}{2B} + \frac{\dot{B} \dot{C}}{C}\right) + \frac{1}{C} \left( - C'' + \frac{C'^2}{2C} + \frac{B'C'}{2 B} \right) = [ \varLambda - \frac{\kappa }{2} (\lambda _s + \lambda _t)] B,\qquad \quad \end{aligned}$$
(84)
$$\begin{aligned}&- \frac{\epsilon }{2} \left( \ddot{C} + \frac{\dot{B} \dot{C}}{2B}\right) - \frac{1}{2B}\left( C'' - \frac{B' C'}{2B} \right) +1 = [ \varLambda - \frac{\kappa }{2} (\lambda _s + \lambda _t)] C,\end{aligned}$$
(85)
$$\begin{aligned}&- \dot{C}' + \frac{\dot{C} C'}{2C} + \frac{\dot{B} C'}{2B} = 0. \end{aligned}$$
(86)

The integration of these equations involves two separated cases. The case \(C'=0\) leads to a generalized family of Datt metrics with its associated instanton family, and will be analyzed elsewhere. Here, let us consider the generic case \(C' \ne 0\). Then (86) is written as:

$$\begin{aligned} \frac{\partial }{\partial u}\left( \ln \frac{C'^{2}}{CB}\right) = 0, \end{aligned}$$
(87)

and then \(\chi \equiv C'^{2}/ CB\) does not depend on the u coordinate, i.e.,

$$\begin{aligned} B(u, \rho ) = \frac{C'^{2}}{C \chi (\rho )} = \frac{4 A'^{2}}{\chi (\rho )}, \end{aligned}$$
(88)

where we have put \(C \equiv A^2\). Defining \(\chi (\rho ) \equiv 4 (1 + \epsilon K(\rho ))\), the metric (74) becomes:

$$\begin{aligned} \hbox {d}s^2 = \epsilon \hbox {d}u^2 + \frac{A'^{2}}{1 + \epsilon K(\rho )} \hbox {d}\rho ^2 + A^2 \hbox {d}\sigma ^2. \end{aligned}$$
(89)

The following linear combination

$$\begin{aligned} \displaystyle {\mathrm{Eq. \, (83)} - \frac{\epsilon }{B} \, \mathrm{Eq. \, (84)} + 2 \, \frac{\epsilon }{C} \, \mathrm{Eq. \, (85)}}, \end{aligned}$$
(90)

leads to

$$\begin{aligned} -2 \frac{\ddot{C}}{C} + \frac{\dot{C}^2}{2 C^2} + \frac{\epsilon }{C}\left( 2 - \frac{C'^2}{2 B C}\right) = 2 \epsilon \, (\varLambda - \kappa \, \lambda _t), \end{aligned}$$
(91)

and taking into account (88) with \(C=A^2\), we obtain the following equation for A:

$$\begin{aligned} \dot{A}^2+2A\ddot{A} + K + \epsilon \, \varLambda \, A^2 = \epsilon \, \kappa \, \lambda _t \, A^2. \end{aligned}$$
(92)

By substituting (92) in (83), we arrive at

$$\begin{aligned} 2 \frac{\ddot{A}}{A}+\frac{\ddot{A'}}{A'} + \, \epsilon \, \varLambda =- \frac{\kappa }{2} \, \epsilon \, (\lambda _s -3 \lambda _t). \end{aligned}$$
(93)

Then, the remaining Einstein equations (84) and (85) are identically satisfied by substitution of (92) and (93) in them.

Therefore, the Einstein equations for the, let us say, generalized \(\varLambda \)LTB family of metrics (89) (now the pressure p is homogeneous, \(p = p(u)\) and can be different from zero) reduce to (92) and (93), or equivalently, to the following equations:

$$\begin{aligned} 3 \, \frac{\dot{A}^2}{A^2} + 2 \left( \frac{\ddot{A}}{A} - \frac{\ddot{A'}}{A'}\right) + 3 \, \frac{K}{A^2} + \epsilon \, \varLambda = \kappa \, \epsilon \, \lambda _s, \end{aligned}$$
(94)

and

$$\begin{aligned} 2 \, \frac{\ddot{A}}{A} + \frac{\dot{A}^2}{A^2} + \frac{K}{A^2} + \epsilon \, \varLambda = \epsilon \, \kappa \, \lambda _t. \end{aligned}$$
(95)

In the case \(p= \varLambda = 0\), we recover the LTB-family and the associated instanton, which are both governed by the following equations:

$$\begin{aligned}&\dot{A}^2+2A\ddot{A} + K=0,\end{aligned}$$
(96)
$$\begin{aligned}&2 \frac{\ddot{A}}{A}+\frac{\ddot{A'}}{A'}=-4\pi \mu , \end{aligned}$$
(97)

that do not depend on \(\epsilon \). Nevertheless, despite the above pair of equations, (96) and (97), are signature independent, the corresponding metric components, \(g_{\rho \rho } = A'^{2}/(1 + \epsilon K(\rho ))\) depend on the \(\epsilon \) sign.

From (96), it results that \(A^2 \ddot{A}\) does not depend on u. Defining \(M(\rho ) \equiv - A^2 \ddot{A}\), Eqs. (96) and (97) are respectively written,

$$\begin{aligned} \dot{A}^2= & {} \frac{2}{A} M(\rho ) - K(\rho ),\end{aligned}$$
(98)
$$\begin{aligned} 4\pi \mu= & {} \frac{M'(\rho )}{A^2 A'}. \end{aligned}$$
(99)

Integration of (98) leads to (9)–(11).

Appendix 3: “Perfect fluid” instanton Lagrangian

In this Appendix, we detail the steps allowing to determine the instanton Lagrangian \(L_E = \mu _E\) whose stress-energy tensor is the one considered in “Appendix 1”, that is (68). We follow closely the method developed in references [29, 33] for action functionals of matter fields, starting from the expression

$$\begin{aligned} T^{\mu \nu } = \frac{2}{\sqrt{|\mathrm {g}|}} \, \frac{\partial (L \sqrt{|\mathrm {g}|})}{\partial g_{\mu \nu }}, \end{aligned}$$
(100)

where \(\mathrm{g}\) stands for the metric determinant, \(\mathrm{g} \equiv \mathrm{det}g_{\alpha \beta }\). Let us consider the Lagrangian \(L=f(\omega , \xi )\) and its associated action \(S = \int f \sqrt{\epsilon \mathrm {g}} \, d^4x\). Substituting this L in (100) we will determine the function \(f(\omega , \xi )\), which leads to the general expression of an isotropic tensor given by (63). We assume that \(\omega \) is alike a thermodynamic variable that has associated a “conserved flux of particles”, say N:

$$\begin{aligned} N = \omega \, n, \qquad n^2 = \epsilon . \end{aligned}$$
(101)

In addition, we also assume that the \(\xi \) variable is constant on each integral curve of the vector field N, that is, \(n^{\alpha } \partial _\alpha \xi = \dot{\xi }= 0\) (“isoentropic flux”) and then, that f only depends on \(\omega \), \(f = f(\omega )\) (“barotropic instanton” for \(\epsilon = +1\)). Then, developing (100) we obtain

$$\begin{aligned} T^{\mu \nu } = 2 \, \frac{\partial f}{\partial g_{\mu \nu }} + \frac{f}{\mathrm{g}} \, \frac{\partial {\mathrm{g}}}{\partial g_{\mu \nu }} = 2 \, f' \, \frac{\partial \omega }{\partial g_{\mu \nu }} + f g^{\mu \nu }, \end{aligned}$$
(102)

where \(f' \equiv \hbox {d}f/\hbox {d}\omega \), and we have considered the relation \(g^{\mu \nu } = \frac{1}{\mathrm{g}} \frac{\partial \mathrm{g}}{\partial g_{\mu \nu }}\).

On the other hand, from (101),

$$\begin{aligned} \omega ^2 = \epsilon \, g_{\alpha \beta } \, N^{\alpha } N^{\beta } = \frac{g_{\alpha \beta }}{\mathrm{g}} \left( \sqrt{\epsilon \mathrm{g}} N^{\alpha }\right) \left( \sqrt{\epsilon \mathrm{g}} N^{\beta }\right) , \end{aligned}$$
(103)

whose variation with respect to \(g_{\mu \nu }\), the flow lines being given, leads to

$$\begin{aligned} 2 \omega \, \frac{\partial \omega }{\partial g_{\mu \nu }}= & {} \left[ \frac{\partial }{\partial g_{\mu \nu }}\, \left( \frac{g_{\alpha \beta }}{\mathrm{g}} \right) \right] \, \epsilon \, {\mathrm{g}} \, N^{\alpha } N^{\beta } \nonumber \\= & {} \epsilon \, {\mathrm{g}} \, \omega ^2 \, \left( \frac{1}{\mathrm{g}} \delta ^{\mu }_\alpha \delta ^{\nu }_\beta \, - \, \frac{1}{\mathrm{g}^2} \frac{\partial {\mathrm{g}}}{\partial g_{\mu \nu }} \, g_{\alpha \beta }\right) n^{\alpha } \, n^{\beta }\nonumber \\= & {} \omega ^{2} ( \epsilon \, n^{\mu } n^{\nu } - g^{\mu \nu }), \end{aligned}$$
(104)

because, given the integral curves, the “conserved current” \(\sqrt{\epsilon {\mathrm{g}}} N^{\alpha }\) is uniquely determined on a flow line in terms of its initial value at some point on the same flow line. Then, this “conserved current” remains unchanged for variations of \(g_{\mu \nu }\) that vanish on the boundary made out from the points where we fix these initial values.

Then, substituting in (102), we have:

$$\begin{aligned} T^{\mu \nu } = \omega \, f' ( \epsilon \, n^{\mu } n^{\nu } - g^{\mu \nu }) + f g^{\mu \nu } = \epsilon \, \omega \, f' n^{\mu } n^{\nu } + ( f - \omega \, f' ) g^{\mu \nu }, \end{aligned}$$
(105)

which is an isotropic 2-tensor T of the form (66), with

$$\begin{aligned} f = \lambda _s = \epsilon \, \mu , \qquad \lambda _t = p = f - \omega \, f'. \end{aligned}$$
(106)

In all, the functional action we are looking for an isotropic stress tensor is given by

$$\begin{aligned} S = \epsilon \int \mu \, \sqrt{\epsilon \, {\mathrm{g}}} \, d^4x, \end{aligned}$$
(107)

with \(\epsilon = +1\) and \(L_E = \mu _E\) for the instanton case.

Incidentally note that, in particular, the above expression for the Lagrangian density in (107), \(L = \epsilon \mu \), allows us to deduce the \(-\varLambda /\kappa \) term appearing in the instanton action \(S_E\) [see Eq. (46)]. In the Einstein field equations, the \(\varLambda g_{\alpha \beta }\) term at the left member corresponds to a source term \(T = - (\varLambda /\kappa ) g\) at the right member. Thus, according to (66), this tensor has \(\epsilon \mu = p = - \varLambda /\kappa \), and then, it follows from the variations of the Lagrangian density \(L = \epsilon \mu = - \varLambda /\kappa \), with respect to the metric (in both the Lorentzian or the Euclidean cases).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lapiedra, R., Morales-Lladosa, J.A. Geodesic family of spherical instantons and cosmic quantum creation. Gen Relativ Gravit 47, 104 (2015). https://doi.org/10.1007/s10714-015-1946-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-015-1946-9

Keywords

Navigation