Skip to main content
Log in

A study of universal thermodynamics in massive gravity: modified entropy on the horizons

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

Universal thermodynamics for FRW model of the Universe bounded by apparent/event horizon has been considered for massive gravity theory. Assuming Hawking temperature and using the unified first law of thermodynamics on the horizon, modified entropy on the horizon has been determined. For simple perfect fluid with constant equation of state, generalized second law of thermodynamics and thermodynamical equilibrium have been examined on both the horizons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Riess, A.G., et al.: Astron. J. 116, 1009 (1998)

    Article  ADS  Google Scholar 

  2. Perlmutter, S.J., et al.: Astrophys. J. 517, 565 (1999)

    Article  ADS  Google Scholar 

  3. Spergel, D.N., et al.: Astrophys. J. Suppl. Ser. 170, 377 (2007)

    Article  ADS  Google Scholar 

  4. Dunkley, J., et al.: Astrophys. J. Suppl. Ser. 180, 306 (2009)

    Article  ADS  Google Scholar 

  5. Larson, D., et al.: Astrophys. J. Suppl. 192, 16 (2011)

    Article  ADS  Google Scholar 

  6. Eisenstein, D.J., et al.: Astrophys. J. 633, 500 (2005)

    Google Scholar 

  7. Percival, W.J., et al.: Mon. Not. R. Astron. Soc. 401, 2148 (2010)

    Article  ADS  Google Scholar 

  8. Sotiriou, T.P., Faraoni, V.: Rev. Mod. Phys. 82, 451 (2010)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  9. Nojiri, S., Odintsov, S.D.: Phys. Rep. 505, 59 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  10. Capozziello, S.: Int. J. Mod. Phys. D 11, 483 (2002)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  11. Nojiri, S., Odintsov, S.D.: Phys. Rev. D 74, 086005 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  12. Starobinsky, A.A.: Phys. Lett. B 91, 99 (1980)

    Article  ADS  Google Scholar 

  13. Kerner, R.: Gen. Relativ. Gravit. 14, 453 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  14. Barrow, J.D., Ottewi, A.: J. Phys. A 16, 2757 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  15. Faraoni, V.: Phys. Rev. D 74, 023520 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  16. Schmidt, H.J.: Int. J. Geom. Methods Mod. Phys. 4, 209 (2007)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  17. Nojiri, S., Odintsov, S.D.: Gen. Reltiv. Gravit. 36, 1765 (2004)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  18. Nojiri, S., Odintsov, S.D.: Mod. Phys. Lett. A 19, 627 (2004)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  19. Abdalla, M.C.B., Nojiri, S., Odintsov, S.D.: Class. Quantum Gravity 22, L35 (2005)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  20. Nojiri, S., Odintsov, S.D.: Phys. Lett. B 576, 5 (2003)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  21. Carroll, S.M., et al.: Phys. Rev. D 70, 043528 (2004)

    Article  ADS  Google Scholar 

  22. Capozziello, S., Nojiri, S., Odintsov, S.D.: Phys. Lett. B 634, 93 (2006)

    Article  ADS  Google Scholar 

  23. Nojiri, S., Odintsov, S.D., Saez-Gomes, D.: Phys. Lett. B 681, 74 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  24. Bengochea, G.R., Ferraro, R.: Phys. Rev. D 79, 124019 (2005)

    Article  ADS  Google Scholar 

  25. Sobouti, Y.: Astron. Astrophys. 464, 921 (2007)

    Article  ADS  MATH  Google Scholar 

  26. Wang, B., Gong, Y., Abdalla, E.: Phys. Rev. D 74, 083520 (2006)

    Article  ADS  Google Scholar 

  27. Mazumder, N., Chakraborty, S.: Class. Quantum Gravity 26, 195016 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  28. Mazumder, N., Chakraborty, S.: Gen. Relativ. Gravit. 42, 813 (2010)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  29. Mazumder, N., Chakraborty, S.: Eur. Phys. J. C 70, 329 (2010)

    Article  ADS  Google Scholar 

  30. Chakraborty, S., Mazumder, N., Biswas, R.: Eur. Phys. Lett. 91, 40007 (2010)

    Article  ADS  Google Scholar 

  31. Mazumder, N., Chakraborty, S.: Gen. Relativ. Gravit. 43, 1827 (2011)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  32. Dutta, J., Chakraborty, S.: Gen. Relativ. Gravit. 42, 1863 (2010)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  33. Chakraborty, S.: Phys. Lett. B 718, 276 (2012)

    Article  ADS  Google Scholar 

  34. Saha, S., Chakraborty, S.: Phys. Lett. B 717, 319 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  35. Chakraborty, S.: Eur. Phys. J. C 74, 2876 (2014)

    Article  ADS  Google Scholar 

  36. Pavon, D., Zimdahl, W.: Phys. Lett. B 708, 217 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  37. Saha, S., Chakraborty, S.: Phys. Rev. D 89, 043512 (2014)

    Article  ADS  Google Scholar 

  38. Izquierdo, G., Pavon, D.: Phys. Lett. B 633, 420 (2006)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  39. Hayward, S.A.: Phys. Rev. D 53, 1938 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  40. Hayward, S.A.: Class. Quantum Gravity 15, 3147 (1998)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  41. Hayward, S.A.: Phys. Rev. Lett. 93, 251101 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  42. Hayward, S.A., Mukhoyama, S., Ashworth, M.C.: Phys. Lett. 256, 347 (1999)

    Article  MathSciNet  Google Scholar 

  43. Cai, R.G., Cao, L.M.: Phys. Rev. D 75, 064008 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  44. Akbar, M., Cai, R.G.: Phys. Rev. D 75, 084003 (2007)

    Article  ADS  Google Scholar 

  45. Cai, R.G., Cao, L.M.: Nucl. Phys. B 785, 135 (2007)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  46. Cai, R.G., Kim, S.P.: J. High Energy Phys. 0502, 050 (2009)

    ADS  MathSciNet  Google Scholar 

  47. Eling, C., Guedens, R., Jacobson, T.: Phys. Rev. Lett. 96, 121301 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  48. Karami, K., Khaledian, M.S., Abdollahi, N.: Eur. Phys. Lett. 98, 30014 (2012)

    Article  Google Scholar 

  49. Wu, Y.B., Zhao, Y.Y., Cai, R.G., Lu, J.B., Lu, J.W., Gao, X.J.: Phys. Lett. B 717, 323 (2012)

    Article  ADS  Google Scholar 

  50. Mitra, S., Saha, S., Chakraborty, S.: Phys. Lett. B 734, 173 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  51. Fierz, M., Pauli, W.: Proc. R. Soc. Lond. A 173, 211 (1939)

    Article  ADS  MathSciNet  Google Scholar 

  52. Van Dam, H., Veltman, M.: Nucl. Phys. B 22, 397 (1970)

    Article  ADS  Google Scholar 

  53. Zakharov, V.: JETP Lett. 12, 312 (1970)

    ADS  Google Scholar 

  54. Vainshtein, A.: Phys. Lett. B 39, 393 (1972)

    Article  ADS  Google Scholar 

  55. Dvali, G., Gabadadze, G., Porrati, M.: Phys. Lett. B 485, 208 (2000)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  56. Boulware, D., Deser, S.: Phys. Lett. B 40, 227 (1972)

    Article  ADS  Google Scholar 

  57. de Rham, C., Gabadadze, G., Tolley, A.J.: Phys. Rev. Lett. 106, 231101 (2011)

    Article  ADS  Google Scholar 

  58. D’Amico, G., de Rham, C., Dubovsky, S., Gabadadze, G., Pirtskhalava, D., Tolley, A.J.: Phys. Rev. D 84, 124046 (2011)

    Article  ADS  Google Scholar 

  59. Gong, Y.: Commun. Theor. Phys. 59, 319 (2013)

    Article  ADS  MATH  Google Scholar 

  60. Gumrukcuoglu, A.E., Lin, C., Mukohyama, S.: J. Cosmol. Astropart. Phys. 1111, 030 (2011)

    Article  Google Scholar 

  61. Gratia, P., Hu, W., Wyman, M.: Phys. Rev. D 86, 061504 (2012)

    Article  ADS  Google Scholar 

  62. Kobayashi, T., Siino, M., Yamaguchi, M., Yashida, D.: Phys. Rev. D 86, 061505 (2012)

    Article  ADS  Google Scholar 

  63. Langlois, D., Naruko, A.: Class. Quantum Gravity 29, 202001 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  64. Volkov, M.S.: JHEP 1201, 035 (2012)

    Article  ADS  Google Scholar 

  65. Volkov, M.S.: Phys. Rev. D 86, 061502 (2012)

    Article  ADS  Google Scholar 

  66. Von Strauss, M., Schmidt-May, A., Enander, J., Mortsell, E., Hassan, S.: J. Cosmol. Astropart. Phys. 1203, 042 (2012)

    Article  Google Scholar 

  67. Cai, Y.F., Esson, D.A., Gao, C.X., Saridakis, E.N.: Phys. Rev. D 87, 064001 (2013)

    Article  ADS  Google Scholar 

  68. De Felice, A., Gumrukeuoglu, A.E., Mukhoyama, S.: Phys. Rev. Lett. 109, 171101 (2012)

    Article  ADS  Google Scholar 

  69. Y. Gong, arXiv:1210.5396

  70. M. Fasiello, A. J. Tolley, arXiv:1206.3852

  71. Bennet, C.L., et al.: Astron. Astrophys. 399, L19 (2003)

    Article  ADS  Google Scholar 

  72. Bennet, C.L., et al.: Astron. Astrophys. 399, L25 (2003)

    Article  ADS  Google Scholar 

  73. de Bernardis, P., et al.: Nature (London) 404, 955 (2000)

    Article  ADS  Google Scholar 

  74. Gold, B., et al.: Astrophys. J. Suppl. Ser. 192, 15 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to IUCAA, Pune, India for their warm hospitality and research facilities as the work has been done there during a visit. The author S.M. is thankful to UGC, Govt. of India for providing NET-JRF. Author S.S. is thankful to UGC-BSR Programme of Jadavpur University for awarding research fellowship. Author S.C. acknowledges the UGC-DRS Programme in the Department of Mathematics, Jadavpur University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhajit Saha.

Appendices

Appendix 1

Using Eq. (55) in Eq. (29), one obtains

$$\begin{aligned} S_A= & {} \frac{A_A}{4G}-\frac{\pi }{G} \int m_{g}^2 \frac{\dot{H}}{H^2}\frac{H}{H_c}\left[ -3\beta +2\gamma \frac{H}{H_c}-3\delta \frac{H^2}{H_{c}^{2}}\right] {\textit{HR}}_{A}^{4}dt \\= & {} \frac{A_A}{4G}-\frac{\pi m_{g}^2}{{\textit{GH}}_c} \int \left[ -3\beta +2\gamma \frac{H}{H_c}-3\delta \frac{H^2}{H_{c}^{2}}\right] \frac{\textit{dH}}{H^4} \\= & {} \frac{A_A}{4G}-\frac{\pi m_{g}^2}{{\textit{GH}}_c} \left[ \beta R_{A}^{3} -\frac{\gamma }{H_c}R_{A}^{2}+\frac{3\delta }{H_{c}^{2}}R_{A}\right] , \end{aligned}$$

which is Eq. (58).

Using Eq. (55) in Eq. (31), the entropy of the event horizon takes the form

$$\begin{aligned} S_E= & {} \frac{A_E}{4G}-\frac{\pi }{2G} \int \left( \frac{R_{A}^{2}R_E}{1-\epsilon }\right) \left( \frac{{\textit{HR}}_E+1}{{\textit{HR}}_E-1}\right) \\&\times \left[ m_{g}^2 \frac{\dot{H}}{H^2}\frac{H}{H_c} \left( -3\beta +2\gamma \frac{H}{H_c}-3\delta \frac{H^2}{H_{c}^{2}} \right) \right] {\textit{dR}}_E \\= & {} \frac{A_E}{4G}-\frac{\pi m_{g}^2}{2GH_c} \int R_E \left( \frac{{\textit{HR}}_E+1}{1-\epsilon } \right) \left[ -3\beta +2\gamma \frac{H}{H_c}-3\delta \frac{H^2}{H_{c}^{2}}\right] \frac{{\textit{dH}}}{H^3} \\= & {} \frac{A_E}{4G}-\frac{\pi m_{g}^2}{2GH_c} \int \left[ \frac{2R_E({\textit{HR}}_E+1)}{1-\dot{R_A}} \left\{ \frac{-3\beta }{H^3}+\frac{2\gamma }{H^2 H_c}-\frac{3\delta }{{\textit{HH}}_{c}^{2}}\right\} \right] {\textit{dH}}, \end{aligned}$$

which is Eq. (59).

Appendix 2

From Eq. (3),

$$\begin{aligned} T_{f} {\textit{dS}}_{fh}= & {} dE_f+pdV_h \\ or,\quad T_{f} \frac{{\textit{dS}}_{fh}}{dt}= & {} \dot{\rho }_m V_h+(\rho _m+p_m)\frac{{\textit{dV}}_h}{dt} \\ or,\quad T_{f} \dot{S}_{fh}= & {} -3H(\rho _m +p_m) \cdot \frac{4}{3}\pi R_{h}^{3}+4\pi (\rho _m+p_m)R_{h}^{2}\dot{R}_h \\ or,\quad \dot{S}_{fh}= & {} \frac{4\pi R_{h}^{2}}{T_f} (\rho _m+p_m)(\dot{R}_h-{\textit{HR}}_h), \end{aligned}$$

which is Eq. (60).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saha, S., Mitra, S. & Chakraborty, S. A study of universal thermodynamics in massive gravity: modified entropy on the horizons. Gen Relativ Gravit 47, 38 (2015). https://doi.org/10.1007/s10714-015-1877-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-015-1877-5

Keywords

Navigation