Skip to main content
Log in

Intrinsic and extrinsic curvatures in Finsler esque spaces

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We consider metrics related to each other by functionals of a scalar field \(\varphi (x)\) and it’s gradient \(\varvec{\nabla }\varphi (x)\), and give transformations of some key geometric quantities associated with such metrics. Our analysis provides useful and elegant geometric insights into the roles of conformal and non-conformal metric deformations in terms of intrinsic and extrinsic geometry of \(\varphi \)-foliations. As a special case, we compare conformal and disformal transforms to highlight some non-trivial scaling differences. We also study the geometry of equi-geodesic surfaces formed by points \(p\) at constant geodesic distance \(\sigma (p,P)\) from a fixed point \(P\), and apply our results to a specific disformal geometry based on \(\sigma (p,P)\) which was recently shown to arise in the context of spacetime with a minimal length.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. We should clarify that we are using the term disformal here to refer to a special subclass of metrics (1), while sometimes all such metrics are called disformal. This is just a matter of terminology.

References

  1. Bekenstein, J.: Phys. Rev. D 48, 3641 (1993). arXiv:gr-qc/9211017

    Article  ADS  MathSciNet  Google Scholar 

  2. Kothawala, D.: Phys. Rev. D 88, 104029 (2013). arXiv:1307.5618

    Article  ADS  Google Scholar 

  3. Kouretsis, A., Stathakopoulos, M., Stavrinos, P.: Relativistic Finsler geometry. Math. Meth. Appl. Sci. 37, 223229 (2014). arXiv:1301.7652

    Article  MathSciNet  Google Scholar 

  4. Basilakos, S., Kouretsis, A., Saridakis, E., Stavrinos, P.: Phys. Rev. D 88, 123510 (2013). arXiv:1311.5915

    Article  ADS  Google Scholar 

  5. Kothawala, D., Padmanabhan, T.: (2014). arXiv:1405.4967

  6. Poisson, E., Pound, A., Vega, I.: Liv. Rev. Rel. 14, 7 (2011). arXiv:1102.0529

    Google Scholar 

  7. Christensen, S.: Phys. Rev. D 14, 2490 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  8. DeWitt, B.: The Global Approach to Quantum Field Theory, vol. 2. Clarendon Press, Oxford (2003)

    MATH  Google Scholar 

  9. Bekenstein, J.: Phys. Rev. D 70, 083509 (2004). arXiv:astro-ph/0403694

    Article  ADS  Google Scholar 

  10. Padmanabhan, T., Kothawala, D.: Phys. Rep. 531, 115 (2013). arXiv:1302.2151

Download references

Acknowledgments

The author thanks IUCAA, Pune, where part of this work was done, for kind hospitality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dawood Kothawala.

Appendices

Appendix 1: Derivation of Christoffel connection component

We start with the following relations which are straightforward to establish:

$$\begin{aligned} q^m \nabla _m {\overset{\star }{g}}_{bc}&= \left( \nabla _{\varvec{q}} {\Omega ^2}\right) g_{bc} - \epsilon {\mathcal {B}}\left( t_b a_c + t_c a_b \right) - \epsilon \left(\nabla _{\varvec{q}} {\mathcal {B}}\right) t_b t_c \nonumber \\ q^m \nabla _b {\overset{\star }{g}}_{mc}&= - {\mathcal {B}}\nabla _b t_c + \epsilon \left[\nabla _{\varvec{q}} \left({\Omega ^2}-{\mathcal {B}}\right)\right] t_b t_c \end{aligned}$$
(35)

where \(\nabla _{\varvec{q}} \equiv q^m \nabla _m\). Using Eq. (35) in Eq. (11), a few steps of algebra give

$$\begin{aligned} {\overset{\star }{\Gamma }}{}^a{}_{bc} T_a&= \sqrt{{\Omega ^2}-{\mathcal {B}}} ~ \Gamma ^a{}_{bc} t_a + \frac{1}{2 \sqrt{{\Omega ^2}-{\mathcal {B}}}} ~ \Delta _{bc} \end{aligned}$$
(36)

where

$$\begin{aligned} \Delta _{bc}&= - \left( \nabla _{\varvec{q}} {\Omega ^2}\right) \; h_{bc} + \epsilon \left[\nabla _{\varvec{q}} \left({\Omega ^2}-{\mathcal {B}}\right)\right] t_b t_c - 2 {\mathcal {B}}K_{(bc)} \nonumber \end{aligned}$$

Appendix 2: Composition law of transformations

As an interesting aside, we note the following composition law for the transformations we are considering in this paper. Using the variables \(\left(A={\Omega ^2}, \alpha \right)\), let us consider the following class of metrics, all defined on the same manifold.

$$\begin{aligned} g^{(1)}_{\textit{ab}}&= A_{10} g^{(0)}_{\textit{ab}} - \epsilon \left( A_{10} - \alpha ^{-1}_{10} \right) t^{(0)}_a t^{(0)}_b \nonumber \\ g^{(2)}_{\textit{ab}}&= A_{21} g^{(1)}_{\textit{ab}} - \epsilon \left( A_{21} - \alpha ^{-1}_{21} \right) t^{(1)}_a t^{(1)}_b \end{aligned}$$
(37)

Then, noting that \(t^{(1)}_a = t^{(0)}_a/\sqrt{\alpha _{10}}\), it is easy to show that

$$\begin{aligned} g^{(2)}_{\textit{ab}}&= \left( A_{21} A_{10}\right) g^{(0)}_{\textit{ab}} - \epsilon \left[ A_{21} A_{10} - \left( \alpha _{21} \alpha _{10} \right) ^{-1} \right] t^{(0)}_a t^{(0)}_b \end{aligned}$$
(38)

which immediately yields the following simple composition law

$$\begin{aligned} A_{20}&= A_{21} A_{10} \nonumber \\ \alpha _{20}&= \alpha _{21} \alpha _{10} \end{aligned}$$
(39)

or symbolically

(40)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kothawala, D. Intrinsic and extrinsic curvatures in Finsler esque spaces. Gen Relativ Gravit 46, 1836 (2014). https://doi.org/10.1007/s10714-014-1836-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-014-1836-6

Keywords

Navigation