Skip to main content
Log in

Spin and mass of the nearest supermassive black hole

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

Quasi-periodic oscillations (QPOs) of the hot plasma spots or clumps orbiting an accreting black hole contain information on the black hole mass and spin. The promising observational signatures for the measurement of black hole mass and spin are the latitudinal oscillation frequency of the bright spots in the accretion flow and the frequency of black hole event horizon rotation. Both of these frequencies are independent of the accretion model and defined completely by the properties of the black hole gravitational field. Interpretation of the known QPO data by dint of a signal modulation from the hot spots in the accreting plasma reveals the Kerr metric rotation parameter, \(a=0.65\pm 0.05\), and mass, \(M=(4.2\pm 0.2)10^6M_\odot \), of the supermassive black hole in the Galactic center. At the same time, the observed 11.5 min QPO period is identified with a period of the black hole event horizon rotation, and, respectively, the 19 min period is identified with a latitudinal oscillation period of hot spots in the accretion flow. The described approach is applicable to black holes with a low accretion rate, when accreting plasma is transparent up to the event horizon region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Gillessen, S., Eisenhauer, F., Trippe, S., Alexander, T., Genzel, R., Martins, F., Ott, T.: Monitoring stellar orbits around the massive black hole in the Galactic Center. Astrophys. J. 692, 1075–1109 (2009)

    Article  ADS  Google Scholar 

  2. Meyer, L., Ghez, A.M., Schödel, R., Yelda, S., Boehle, A., Lu, J.R., Do, T., Morris, M.R., Becklin, E.E., Matthews, K.: The shortest known period star orbiting our Galaxy’s supermassive black hole. Science 338, 84–87 (2012)

    Article  ADS  Google Scholar 

  3. Aschenbach, B., Grosso, N., Porquet, N., Predehl, P.: X-ray flares reveal mass and angular momentum of the Galactic Center black hole. Astron. Astrophys. 417, 71–78 (2004)

    Article  ADS  Google Scholar 

  4. Genzel, R., Schödel, R., Ott, T., Eckart, A., Alexander, T., Lacombe, F., Rouan, D., Aschenbach, B.: Near-infrared flares from accreting gas around the supermassive black hole at the Galactic Centre. Nature 425, 934–937 (2003)

    Article  ADS  Google Scholar 

  5. Remillard, R.A., McClintock, J.E.: X-ray properties of black-hole binaries. Ann. Rev. Astron. Astrophys. 44, 49–92 (2006)

    Article  ADS  Google Scholar 

  6. Kato, Y., Miyoshi, M., Takahashi, R., Negoro, H., Matsumoto, R.: Measuring spin of a supermassive black hole at the Galactic Centre—implications for a unique spin. Mon. Not. R. Astron. Soc. 403, L74–L78 (2010)

    Article  ADS  Google Scholar 

  7. Dolence, J.C., Gammie, J.C., Shiokawa, J.C., Noble, S. C.: Near-infrared and X-ray quasi-periodic oscillations in numerical models of Sgr A*. Astropys. J. 746, L10, 6pp (2012)

  8. Novikov, I.D., Thorne, K.S.: Astrophysics of black holes. In: DeWitt, C., DeWitt, B. (eds.) Black Holes, pp. 343–450. Gordan and Breach, New York (1973)

    Google Scholar 

  9. Page, D.N., Thorne, K.S.: Disk-accretion onto a black hole. Time-Aver. Struct. Accretion Disk. Astropys. J. 191, 499 (1974)

    Google Scholar 

  10. McClintock, J.E., Narayan, R., Davis, S.W., Gou, L., Kulkarni, A., Orosz, J.A., Penna, R.F., Remillard, R.A., Steiner, J.F.: Measuring the spins of accreting black holes. Class. Quantum Grav. 28, 114009 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  11. Fabian, A.C., Rees, M.J., Stella, L., White, N.E.: X-ray fluorescence from the inner disc in Cygnus X-1. Mon. Not. R. Astron. Soc. 238, 729 (1989)

    Article  ADS  Google Scholar 

  12. Brenneman, L.W., Reynolds, C.S.: Constraining black hole spin via X-ray spectroscopy. Astrophys. J. 652, 1028 (2006)

    Article  ADS  Google Scholar 

  13. Miller, J.M.: Relativistic X-ray lines from the inner accretion disks around black holes. Ann. Rev. Astron. Astrophys. 45, 441–479 (2007)

    Article  ADS  Google Scholar 

  14. Narayan, R., McClintock, J.E.: Observational evidence for a correlation between jet power and black hole spin. Mon. Not. R. Astron. Soc. 419, L69–L73 (2012)

    Article  ADS  Google Scholar 

  15. Syunyaev, R.A.: Variability of X-rays from black holes with accretion disks. Sov. Astron. 16, 941–944 (1973)

    ADS  Google Scholar 

  16. Abramowicz, M.A., Lanza, A., Spiegel, E.A., Szuszkiewicz, E.: Vortices on accretion disks. Nature 356, 41–43 (1992)

    Article  ADS  Google Scholar 

  17. Zakharov, A.F.: On the hotspot near a Kerr black-hole—Monte-Carlo simulations. Mon. Not. R. Astron. Soc. 269, 283–288 (1994)

    Article  ADS  Google Scholar 

  18. Fukue, J.: Light-curve diagnosis of a hot spot for accretion-disk models. Publ. Astron. Soc. Jpn. 55, 1121–1125 (2003)

    ADS  Google Scholar 

  19. Broderick, A.E., Loeb, A.: Imaging optically-thin hotspots near the black hole horizon of Sgr A* at radio and near-infrared wavelengths. Mon. Not. R. Astron. Soc. 367, 905–916 (2006)

    Article  ADS  Google Scholar 

  20. Wang, J.-M., Cheng, C., Li, Y.-R.: Clumpy accretion onto black holes. I. Clumpy-advection-dominated accretion flow structure and radiation. Astrophys. J. 748, 147, 13pp (2012)

  21. Hawley, J.F., Krolik, J.H.: Global MHD simulation of the inner accretion disk in a pseudo-Newtonian potential. Astrophys. J. 548, 348–367 (2001)

    Article  ADS  Google Scholar 

  22. Armitage, P.J., Reynolds, C.S., Chiang, J.: Simulations of accretion flows crossing the last stable orbit. Astrophys. J. 548, 868–875 (2001)

    Article  ADS  Google Scholar 

  23. Reynolds, C.S., Armitage, P.: A variable efficiency for thin-disk black hole accretion. Astrophys. J. 561, L81–L84 (2001)

    Article  ADS  Google Scholar 

  24. Reynolds, C.S., Armitage, P.: The variability of accretion on to Schwarzschild black holes from turbulent magnetized discs. Mon. Not. R. Astron. Soc. 341, 1041–1050 (2003)

    Article  ADS  Google Scholar 

  25. Hills, J.G.: Possible power source of Seyfert galaxies and QSOs. Nature 254, 295–298 (1975)

    Article  ADS  Google Scholar 

  26. Dokuchaev, V.I., Ozernoy, L.M.: Tidal disruption of stars and the evolution of a massive black hole under the conditions of the Galactic Center. Sov. Astron. Lett. 3, 209–211 (1977)

    ADS  Google Scholar 

  27. Carter, B., Luminet, L.P.: Pancake detonation of stars by black holes in Galactic Nuclei. Nature 296, 211–214 (1982)

    Article  ADS  Google Scholar 

  28. Rees, M.J.: Tidal disruption of stars by black holes of 10 to the 6th-10 to the 8th solar masses in nearby galaxies. Nature 333, 523–528 (1988)

    Article  ADS  Google Scholar 

  29. Dokuchaev, V.I.: The evolution of a massive black-hole in the nucleus of a normal galaxy. Sov. Astron. Lett. 15, 167–170 (1989)

    ADS  Google Scholar 

  30. Dokuchaev, V.I.: Joint evolution of a galactic nucleus and central massive black hole. Mon. Not. R. Astron. Soc. 251, 564–574 (1991)

    Article  ADS  Google Scholar 

  31. Genzel, R., Eisenhauer, F., Gillessenm, F.: The Galactic Center massive black hole and nuclear star cluster. Rev. Mod. Phys. 82, 3121–3195 (2010)

    Article  ADS  Google Scholar 

  32. Rees, M.C.: Black hole models for Active Galactic Nuclei. Ann. Rev. Astron. Astrophys. 22, 471–506 (1984)

    Article  ADS  Google Scholar 

  33. Begelman, M.C., Blandford, R.D., Rees, M.C.: Theory of extragalactic radio sources. Rev. Mod. Phys. 56, 255–351 (1984)

    Article  ADS  Google Scholar 

  34. Revnivtsev, M.G., Churazov, E.M., Sunyaev, R.A., Lutovinov, A.A., Gilfanov, M.R., Vikhlinin, A.A., Shtykovsky, P.E., Pavlinsky, M.N.: Hard X-ray view of the past activity of Sgr A* in a natural compton mirror. Astron. Astrophys. 425, L49–L52 (2004)

    Article  ADS  Google Scholar 

  35. Cheng, K.-S., Chernyshov, D.O., Dogiel, V.A., Ko, C.-M., Ip, W.-H., Wang, Y.: The Fermi bubble as a source of cosmic rays in the energy range \({\>}10^{15}\) eV. Astrophys. J. 746, 116, 12pp (2012)

  36. Blandford, R.D., Znajek, R.L.: Electromagnetic extraction of energy from Kerr black holes. Mon. Not. R. Astron. Soc. 179, 433–456 (1977)

    Article  ADS  Google Scholar 

  37. Bardeen, J.M.: Kerr metric black holes. Nature 226, 64–65 (1970)

    Article  ADS  Google Scholar 

  38. Bardeen, J.M., Carter, B., Hawking, S.W.: The four laws of black hole mechanics. Comm. Math. Phys. 31, 161–170 (1973)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  39. Thorne, K.S.: Disk-accretion onto a black hole. II. Evolution of the hole. Astrophys. J. 191, 507–520 (1974)

    Article  ADS  Google Scholar 

  40. Carter, B.: Global structure of the Kerr family of gravitational fields. Phys. Rev. 174, 1559–1571 (1968)

    Article  ADS  MATH  Google Scholar 

  41. Bardeen, J.M., Press, W.H., Teukiolsky, S.A.: Rotating black holes: locally nonrotating frames, energy extraction, and scalar synchrotron radiation. Astrophys. J. 178, 347–370 (1972)

    Article  ADS  Google Scholar 

  42. Misner, C.W., Breuer, R.A., Brill, D.R., Chrzanowski, P.L., Hughes, H.G., Pereira, C.M.: Gravitational synchrotron radiation in the Schwarzschild geometry. Phys. Rev. Lett. 28, 998–1001 (1972)

    Article  ADS  Google Scholar 

  43. Cunningham, C.T., Bardeen, J.M.: The optical appearance of a star orbiting an extreme Kerr black hole. Astrophys. J. 173, L137–L142 (1972)

    Article  ADS  Google Scholar 

  44. Polnarev, A.G.: Radiation spectrum of a source moving in a stable circular orbit near a rotating black hole. Astrophysics 8, 273–279 (1972)

    Article  ADS  Google Scholar 

  45. Wilkins, D.C.: Bound geodesics in the Kerr metric. Phys. Rev. D. 5, 814–822 (1972)

    Article  ADS  Google Scholar 

  46. Merloni, A., Vietri, M., Stella, M., Bini, M.: On gravitomagnetic precession around black holes. Mon. Not. R. Astron. Soc. 304, 155–159 (1999)

    Article  ADS  Google Scholar 

  47. Dokuchaev, V.I.: Is there life inside black holes? Class. Quantum Grav. 28, 235015, 10pp (2011)

  48. Dokuchaev, V.I.: Life inside black holes. Grav. Cosmol. 18, 65–69 (2012)

    Article  ADS  MATH  Google Scholar 

  49. Broderick, A.E., Fish, V.L., Doeleman, S.S., Loeb, A.: Estimating the parameters of Sgr A*’s accretion flow via millimeter VLBI. Astrophys. J. 697, 45–54 (2009)

    Article  ADS  Google Scholar 

  50. Broderick, A.E., Fish, V.L., Doeleman, S.S., Loeb, A.: Evidence for low black hole spin and physically motivated accretion models from millimeter-VLBI observations of Sagittarius A*. Astrophys. J. 735, 110, 15pp (2011)

Download references

Acknowledgments

I thank V. A. Berezin and Yu. N. Eroshenko for helpful discussions. This research was supported in part by the Russian Foundation for Basic Research grant RFBR 13-02-00257 and by the Research Program OFN-17 of the Division of Physics, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vyacheslav I. Dokuchaev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dokuchaev, V.I. Spin and mass of the nearest supermassive black hole. Gen Relativ Gravit 46, 1832 (2014). https://doi.org/10.1007/s10714-014-1832-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-014-1832-x

Keywords

Navigation