Skip to main content
Log in

Warp products and (2+1) dimensional spacetimes

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We investigate the geometrical aspects of the extended (2+1) dimensional Banados–Teitelboim–Zanelli spacetimes in the multiply warped product scheme. To do this, we analyze the interior physical properties by constructing the explicit warp functions in these regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. In the literature [28], there exist typos in the expressions for \(p_{2}\) in (5.5), and for \(q_{1}\) and \(q_{2}\) in (5.10).

References

  1. Banados, M., Teitelboim, C., Zanelli, J.: Phys. Rev. Lett. 69, 1849 (1992)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  2. Martinez, C., Teitelboim, C., Zanelli, J.: J. Phys. D 61, 104013 (2000)

    MathSciNet  Google Scholar 

  3. Banados, M., Henneaux, M., Teitelboim, C., Zanelli, J.: Phys. Rev. D 48, 1506 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  4. Maldacena, J., Strominger, A.: JHEP 9812, 005 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  5. Sfetsos, K., Skenderis, K.: Nucl. Phys. B 517, 179 (1998)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  6. Witten, E.: Phys. Rev. D 44, 314 (1991)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  7. Lemos, J.P.S.: Phys. Lett. B 353, 46 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  8. Sa, P.M., Kleber, A., Lemos, J.P.S.: Class. Quant. Gravit. 13, 125 (1996)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  9. Pimentel, L.O.: Class. Quant. Gravit. 6, 263 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  10. Chan, K.C.K.: Phys. Rev. D 55, 3564 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  11. Hong, S.T., Kim, Y.W., Park, Y.J.: Phys. Rev. D 62, 064021 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  12. Deser, S., Levin, O.: Class. Quant. Gravit. 14, L163 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  13. Deser, S., Levin, O.: Class. Quant. Gravit. 15, L85 (1998)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  14. Deser, S., Levin, O.: Phy. Rev. D 59, 064004 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  15. Hong, S.T., Kim, Y.W., Park, Y.J.: Phys. Rev. D 62, 024024 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  16. Bishop, R.L., O’Neill, B.: Trans. Am. Math. Soc. 145, 1 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  17. Beem, J.K., Ehrlich, P.E., Easley, K.: Global Lorentzian Geometry. Marcel Dekker Pure and Applied Mathematics, New York (1996)

  18. Reissner, H.: Ann. Phys. 50, 106 (1916)

    Article  Google Scholar 

  19. Nordström, G.: Proc. K. Ned. Akda. Wet. 20, 1238 (1918)

    Google Scholar 

  20. Demers, J., Lafrance, R., Meyers, R.C.: Phys. Rev. D 52, 2245 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  21. Ghosh, A., Mitra, P.: Phys. Lett. B 357, 295 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  22. Cognola, G., Lecca, P.: Phys. Rev. D 57, 1108 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  23. Choi, J.: J. Math. Phys. 41, 8163 (2000)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  24. Ünal, B.: J. Geom. Phys. 34, 287 (2000)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  25. Hong, S.T., Choi, J., Park, Y.J.: Nonlinear Anal. 63, 493 (2005)

    Article  Google Scholar 

  26. Hong, S.T., Choi, J., Park, Y.J.: Gen. Relativ. Gravit. 35, 2105 (2003)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  27. Choi, J., Hong, S.T.: J. Math. Phys. 45, 642 (2004)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  28. Weisstein, E.W.: CRC Concise Encyclopedia of Mathematics. Chapman & Hall/CRC, New York (2003)

    Google Scholar 

  29. Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series and Products. Academic Press, San Diego (2000)

    MATH  Google Scholar 

Download references

Acknowledgments

The author would like to thank the anonymous referees for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soon-Tae Hong.

Appendices

Appendix 1: Mathematical aspects of a quartic equation

Now, we consider four roots of the lapse function in (2.48) which produces a quartic equation of the form

$$\begin{aligned} x^{4}+a_{1}x^{2}+a_{2}x+a_{3}=0, \end{aligned}$$
(5.1)

where

$$\begin{aligned} a_{1}=-Ml^{2},\quad a_{2}=MBl^{2},\quad a_{3}=\frac{1}{4}J^{2}l^{2}. \end{aligned}$$
(5.2)

Following the algorithm for treating the quartic equation [28], we obtain the four roots \((x_{1},x_{2},x_{3},x_{4})\) of the Eq. (5.1) given by

$$\begin{aligned} x_{1}&= \frac{1}{2}p_{1}+\frac{1}{2}p_{2},\nonumber \\ x_{2}&= \frac{1}{2}p_{1}-\frac{1}{2}p_{2},\nonumber \\ x_{3}&= -\frac{1}{2}p_{1}+\frac{1}{2}p_{3},\nonumber \\ x_{4}&= -\frac{1}{2}p_{1}-\frac{1}{2}p_{3}, \end{aligned}$$
(5.3)

where

$$\begin{aligned} p_{1}=\left( y_{0}-a_{1}\right) ^{1/2}. \end{aligned}$$
(5.4)

For \(p_{1}\ne 0\) we obtain Footnote 1

$$\begin{aligned} p_{2}&= \left( -p_{1}^{2}-2a_{1}-\frac{2a_{2}}{p_{1}}\right) ^{1/2},\nonumber \\ p_{3}&= \left( -p_{1}^{2}-2a_{1}+\frac{2a_{2}}{p_{1}}\right) ^{1/2}, \end{aligned}$$
(5.5)

and for \(p_{1}=0\) we arrive at

$$\begin{aligned} p_{2}&= \left( -2a_{1}+2\left( y_{0}^{2}-4a_{3}\right) ^{1/2}\right) ^{1/2},\nonumber \\ p_{3}&= \left( -2a_{1}-2\left( y_{0}^{2}-4a_{3}\right) ^{1/2}\right) ^{1/2}. \end{aligned}$$
(5.6)

Here \(y_{0}\) is defined as a real root of the following cubic equation

$$\begin{aligned} y^{3}+b_{1}y^{2}+b_{2}y+b_{3}=0, \end{aligned}$$
(5.7)

where

$$\begin{aligned} b_{1}=-a_{1},\quad b_{2}=-4a_{3},\quad b_{3}=4a_{1}a_{3}- a_{2}^{2}. \end{aligned}$$
(5.8)

The three roots of the cubic equation (5.7) are then readily given by (see “Appendix 2” for details)

$$\begin{aligned} y_{1}&= q_{1}+q_{2}-\frac{1}{3}b_{1},\nonumber \\ y_{2}&= -\frac{1}{2}(q_{1}+q_{2})+\frac{i\sqrt{3}}{2}(q_{1}-q_{2})-\frac{1}{3}b_{1},\nonumber \\ y_{3}&= -\frac{1}{2}(q_{1}+q_{2})-\frac{i\sqrt{3}}{2}(q_{1}-q_{2})-\frac{1}{3}b_{1}, \end{aligned}$$
(5.9)

where

$$\begin{aligned} q_{1}&= \left( q_{3}+(q_{3}^{2}+q_{4}^{3})^{1/2}\right) ^{1/3},\nonumber \\ q_{2}&= \left( q_{3}-(q_{3}^{2}+q_{4}^{3})^{1/2}\right) ^{1/3},\nonumber \\ q_{3}&= \frac{9b_{1}b_{2}-27b_{3}-2b_{1}^{2}}{54},\nonumber \\ q_{4}&= \frac{3b_{2}-b_{1}^{2}}{9}. \end{aligned}$$
(5.10)

These three roots in (5.9) can be also rewritten in terms of trigonometric functions as follows

$$\begin{aligned} y_{1}&= 2(-q_{4})^{1/2}\cos \left( \frac{\psi }{3}\right) -\frac{1}{3}b_{1},\nonumber \\ y_{2}&= 2(-q_{4})^{1/2}\cos \left( \frac{\psi }{3}+\frac{2\pi }{3}\right) -\frac{1}{3}b_{1},\nonumber \\ y_{3}&= 2(-q_{4})^{1/2}\cos \left( \frac{\psi }{3}+\frac{4\pi }{3}\right) -\frac{1}{3}b_{1}, \end{aligned}$$
(5.11)

where \(\psi \) satisfies the identities

$$\begin{aligned} \cos \psi&= \frac{q_{3}}{(-q_{4}^{3})^{1/2}},\nonumber \\ \sin \psi&= \left( 1+\frac{q_{3}^{2}}{q_{4}^{3}}\right) ^{1/2}. \end{aligned}$$
(5.12)

Now, we consider the specific case of the static BTZ limit where the coefficients of the quartic equation (5.1) are given as

$$\begin{aligned} a_{1}=-Ml^{2},\quad a_{2}=0,\quad a_{3}=0. \end{aligned}$$
(5.13)

From (5.9), one readily obtains the three roots of the cubic equation (5.7)

$$\begin{aligned} y_{1}=a_{1},\quad y_{2}=0,\quad y_{3}=0. \end{aligned}$$
(5.14)

If we choose \(y_{0}\) as in \(y_{0}=y_{1}=a_{1}=-Ml^{2}\), exploiting (5.3) we obtain the four roots of the quartic equation (5.1) as follows

$$\begin{aligned} x_{1}=0,\quad x_{2}=0,\quad x_{3}=M^{1/2}l,\quad x_{4}=-M^{1/2}l, \end{aligned}$$
(5.15)

which imply that \(r_{+}=x_{3}\), \(r_{-}=x_{4}\), \(r_{1}=x_{1}\) and \(r_{2}=x_{2}\). Similarly for the choice of \(y_{0}=y_{2}=y_{3}=0\), we again obtain the four roots of the Eq. (5.1)

$$\begin{aligned} x_{1}=M^{1/2}l,\quad x_{2}=0,\quad x_{3}=0,\quad x_{4}=-M^{1/2}l, \end{aligned}$$
(5.16)

to conclude that \(r_{+}=x_{1}\), \(r_{-}=x_{4}\), \(r_{1}=x_{2}\) and \(r_{2}=x_{3}\). The mapping of \((r_{+},r_{-},r_{1},r_{2})\) onto \((x_{1},x_{2},x_{3},x_{4})\) depends on the choice of \(y_{0}\) in \((y_{1},y_{2},y_{3})\).

Appendix 2: Algorithm for roots of a cubic equation

Next, we recapitulate the algorithm for finding solutions of a cubic equation appeared in [28]. To do this, we start with a cubic equation of the form

$$\begin{aligned} y^{3}+b_{1}y^{2}+b_{2}y+b_{3}=0. \end{aligned}$$
(6.1)

Introducing a new variable

$$\begin{aligned} z=y+\frac{1}{3}b_{1}, \end{aligned}$$
(6.2)

we find the following form

$$\begin{aligned} z^{3}+3q_{4}z-2q_{3}=0, \end{aligned}$$
(6.3)

where \(q_{3}\) and \(q_{4}\) are given by (5.10). Next, we readily check that

$$\begin{aligned} z_{1}=q_{1}+q_{2}, \end{aligned}$$
(6.4)

with \(q_{1}\) and \(q_{2}\) being defined as in (5.10), is a root of the cubic equation (6.3). Moreover, we find that (6.3) is factorized as

$$\begin{aligned} (z-z_{1})(z^{2}+z_{1}z+3q_{4})=0, \end{aligned}$$
(6.5)

from which we obtain the other two roots of the from

$$\begin{aligned} z_{2}&= -\frac{1}{2}(q_{1}+q_{2})+\frac{i\sqrt{3}}{2}(q_{1}-q_{2}),\nonumber \\ z_{3}&= -\frac{1}{2}(q_{1}+q_{2})-\frac{i\sqrt{3}}{2}(q_{1}-q_{2}). \end{aligned}$$
(6.6)

Even though \(z_{2}\) and \(z_{3}\) possess an \(i\) as shown in (6.6), this does not indicate anything about the numbers of real and complex roots, since \(q_{1}\) and \(q_{2}\) are themselves complex in general. In order to determine which roots are real or complex, we need to introduce a criterion parameter, namely the discriminant \(D\) defined as

$$\begin{aligned} D=q_{3}^{2}+q_{4}^{3}. \end{aligned}$$
(6.7)

If \(D>0\), we have one real root and two complex conjugates; if \(D=0\), we have three real roots and at least two roots are equal; if \(D<0\), we have three real roots and all roots are different. For our case of interest associated with (2.49), we need to have three different roots in the cubic equation. From now on, we will thus consider \(D<0\) case only. Keeping these roots \((z_{1},z_{2},z_{3})\) in mind and using the definition (6.2), we readily find the roots (5.9) for the cubic equation in (5.7) or in (6.1). Moreover, we obtain the identities:

$$\begin{aligned} z_{1}+z_{2}+z_{3}&= 0,\nonumber \\ z_{1}z_{2}+z_{1}z_{3}+z_{2}z_{3}&= 3q_{4},\nonumber \\ z_{1}z_{2}z_{3}&= 2q_{3},\nonumber \\ z_{1}^{2}+z_{2}^{2}+z_{3}^{2}&= -6q_{4},\nonumber \\ z_{1}^{3}+z_{2}^{3}+z_{3}^{3}&= 6q_{3},\nonumber \\ z_{1}^{4}+z_{2}^{4}+z_{3}^{4}&= 18q_{4}^{2},\nonumber \\ z_{1}^{5}+z_{2}^{5}+z_{3}^{5}&= -30q_{3}q_{4}. \end{aligned}$$
(6.8)

Finally, we formulate the above roots in terms of trigonometric function. To do this, we exploit the angle \(\psi \) defined in (5.12). Here we again consider the negative discriminant case: \(D<0\) which is relevant to our cubic equation at hand. Exploiting the identities

$$\begin{aligned} q_{3}\pm i(-q_{3}^{2}-q_{4}^{3})^{1/2}=(-q_{4}^{3})^{1/2}e^{\pm i\psi }, \end{aligned}$$
(6.9)

we arrive at the desired forms in (5.11).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, ST., Kim, Y. Warp products and (2+1) dimensional spacetimes. Gen Relativ Gravit 46, 1781 (2014). https://doi.org/10.1007/s10714-014-1781-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-014-1781-4

Keywords

Navigation