Skip to main content
Log in

Observational results from the LIGO and Virgo detectors

  • Review Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

The first generation of ground-based interferometric gravitational wave detectors, LIGO, GEO and Virgo, have operated and taken data at their design sensitivities over the last few years. The data have been examined for the presence of gravitational wave signals. While no gravitational wave events have been found important astrophysical statements can be made. The most significant results are presented in this article. The network of detectors is currently being upgraded and extended. This upgrade will provide the sensitivity needed for the direct detection of an astrophysical source emitting gravitational waves. For instance, the binary neutron stars inspiral distance range will reach 200 Mpc when upgraded detectors reach their design sensitivities circa 2020. The capability of the global network to determine accurately the sky location of the source is opening a new window on the Universe, where gravitational alerts will be used for quick electro-magnetic follow-ups of the sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. \(\epsilon ={{I_{xx}-I{yy}}\over {I_{zz}}}\), where the \(I\)s are the moments of inertia of the star and the spin axis is assumed to lie in the \(z-\)direction.

  2. In the case of Gaussian noise, an SNR 8 event is very unlikely to be due to noise.

    Fig. 1
    figure 1

    The best LIGO and Virgo sensitivities during the initial observational era

  3. This is a rough estimate when the distances are within our local universe.

  4. This represents \(\sim \)350 GRBs.

  5. It is however unknown whether EM and GW energies are correlated.

  6. See [9] for references.

  7. The real situation is a bit more complicated because of unknown other parameters (polarization angle, inclination angle, phase) that can be maximized over.

  8. See however the discussion on Schumann resonances in Sect. 3.

References

  1. Einstein@home. http://einstein.phys.uwm.edu

  2. Aartsen, M., et al.: Evidence for high-energy extraterrestrial neutrinos at the icecube detector. Science 342(1242), 856 (2013)

    Google Scholar 

  3. Aasi, J., Abadie, J., Abbott, B., Abbott, R., Abbott, T., et al.: Constraints on cosmic strings from the LIGO–Virgo gravitational-wave detectors. Phys. Rev. Lett. 112(131), 101 (2014)

    Google Scholar 

  4. Aasi, J., et al.: Virgo data characterization and impact on gravitational wave searches. Class. Quantum Grav. 29(155), 002 (2012)

    Google Scholar 

  5. Aasi, J., et al.: Einstein@Home all-sky search for periodic gravitational waves in LIGO S5 data. Phys. Rev. D87(042), 001 (2013)

    Google Scholar 

  6. Aasi, J., et al.: Parameter estimation for compact binary coalescence signals with the first generation gravitational-wave detector network. Phys. Rev. D88(062), 001 (2013)

    Google Scholar 

  7. Aasi, J., et al.: Search for gravitational waves from binary black hole inspiral, merger and ringdown in LIGO–Virgo data from 2009–2010. Phys. Rev. D87(022), 002 (2013)

    Google Scholar 

  8. Aasi, J., et al.: Application of a Hough search for continuous gravitational waves on data from the 5th LIGO science run. Class. Quantum Grav. 31(085), 014 (2014)

    Google Scholar 

  9. Aasi, J., et al.: First searches for optical counterparts to gravitational-wave candidate events. Astrophys. J. Suppl. 211, 7 (2014)

    ADS  Google Scholar 

  10. Aasi, J., et al.: Gravitational waves from known pulsars: results from the initial detector era. Astrophys. J. 785, 119 (2014)

    ADS  Google Scholar 

  11. Abadie, J., et al.: First search for gravitational waves from the youngest known neutron star. Astrophys. J. 722, 1504–1513 (2010)

    ADS  Google Scholar 

  12. Abadie, J., et al.: Predictions for the rates of compact binary coalescences observable by ground-based gravitational-wave detectors. Class. Quantum Grav. 27(173), 001 (2010)

    Google Scholar 

  13. Abadie, J., et al.: Search for gravitational-wave inspiral signals associated with short Gamma–Ray Bursts during LIGO’s fifth and Virgo’s first science run. Astrophys. J. 715, 1453–1461 (2010)

    ADS  Google Scholar 

  14. Abadie, J., et al.: A search for gravitational waves associated with the August 2006 timing glitch of the Vela pulsar. Phys. Rev. D83, 042,001 (2011)

    Google Scholar 

  15. Abadie, J., et al.: Search for gravitational wave bursts from six magnetars. Astrophys. J. 734, L35 (2011)

    ADS  Google Scholar 

  16. Abadie, J., et al.: All-sky search for gravitational-wave bursts in the second joint LIGO-Virgo run. Phys. Rev. D85, 122007 (2012)

    ADS  Google Scholar 

  17. Abadie, J., et al.: All-sky search for periodic gravitational waves in the full S5 LIGO data. Phys. Rev. D85, 022001 (2012)

    ADS  Google Scholar 

  18. Abadie, J., et al.: First low-latency LIGO+Virgo search for binary inspirals and their electromagnetic counterparts. Astron. Astrophys. 541, A155 (2012)

    ADS  Google Scholar 

  19. Abadie, J., et al.: Implications for the origin Of GRB 051103 from LIGO observations. Astrophys. J. 755, 2 (2012)

    ADS  Google Scholar 

  20. Abadie, J.: Search for gravitational waves from intermediate mass binary black holes. Phys. Rev. D85, 102044 (2012)

    ADS  Google Scholar 

  21. Abadie, J.: Search for gravitational waves from low mass compact binary coalescence in LIGO’s sixth science run and Virgo’s science runs 2 and 3. Phys. Rev. D85, 082002 (2012)

    ADS  Google Scholar 

  22. Abadie, J., et al.: Sensitivity achieved by the LIGO and Virgo gravitational wave detectors during LIGO’s sixth and Virgo’s second and third science runs. arXiv:1203.2674 [gr-qc] (2012)

  23. Abadie, J., et al.: Upper limits on a stochastic gravitational-wave background using LIGO and Virgo interferometers at 600–1000 Hz. Phys. Rev. D85, 122001 (2012)

    ADS  Google Scholar 

  24. Abbott, B., et al.: Setting upper limits on the strength of periodic gravitational waves using the first science data from the GEO 600 and LIGO detectors. Phys. Rev. D69, 082004 (2004)

    ADS  Google Scholar 

  25. Abbott, B., et al.: Limits on gravitational wave emission from selected pulsars using LIGO data. Phys. Rev. Lett. 94, 181103 (2005)

    ADS  Google Scholar 

  26. Abbott, B., et al.: Coherent searches for periodic gravitational waves from unknown isolated sources and Scorpius X-1: results from the second LIGO science run. Phys. Rev. D76, 082001 (2007)

    MathSciNet  ADS  Google Scholar 

  27. Abbott, B., et al.: First cross-correlation analysis of interferometric and resonant-bar gravitational-wave data for stochastic backgrounds. Phys. Rev. D76, 022001 (2007)

    MathSciNet  ADS  Google Scholar 

  28. Abbott, B., et al.: Upper limits on gravitational wave emission from 78 radio pulsars. Phys. Rev. D76, 042001 (2007)

    MathSciNet  ADS  Google Scholar 

  29. Abbott, B., et al.: Beating the spin-down limit on gravitational wave emission from the Crab pulsar. Astrophys. J. 683, L45–L50 (2008)

    ADS  Google Scholar 

  30. Abbott, B., et al.: Implications for the origin of GRB 070201 from LIGO observations. Astrophys. J. 681, 1419–1428 (2008)

    ADS  Google Scholar 

  31. Abbott, B., et al.: Search for gravitational waves associated with 39 gamma-ray bursts using data from the second, third, and fourth LIGO runs. Phys. Rev. D77, 062004 (2008)

    ADS  Google Scholar 

  32. Abbott, B., et al.: An upper limit on the stochastic gravitational-wave background of cosmological origin. Nature 460, 990–994 (2009)

    ADS  Google Scholar 

  33. Abbott, B., et al.: LIGO: the laser interferometer gravitational-wave observatory. Rep. Progr. Phys. 72, 076901 (2009)

    ADS  Google Scholar 

  34. Abbott, B., et al.: Search for gravitational wave ringdowns from perturbed black holes in LIGO S4 data. Phys. Rev. D80, 062001 (2009)

    MathSciNet  ADS  Google Scholar 

  35. Abbott, B., et al.: Stacked search for gravitational waves from the 2006 SGR 1900+14 storm. Astrophys. J. 701, L68–L74 (2009)

    ADS  Google Scholar 

  36. Abbott, B., et al.: Search for gravitational-wave bursts associated with gamma-ray bursts using data from LIGO science run 5 and Virgo science run 1. Astrophys. J. 715, 1438–1452 (2010)

    ADS  Google Scholar 

  37. Abbott, B., et al.: Searches for gravitational waves from known pulsars with S5 LIGO data. Astrophys. J. 713, 671–685 (2010)

    ADS  Google Scholar 

  38. Abbott, B., et al.: Directional limits on persistent gravitational waves using LIGO S5 Science Data. Phys. Rev. Lett. 107, 271102 (2011)

    ADS  Google Scholar 

  39. Abbott, B., et al.: Implementation and testing of the first prompt search for electromagnetic counterparts to gravitational wave transients. Astron. Astrophys. 539, A124 (2012)

    ADS  Google Scholar 

  40. Accadia, T., et al.: Virgo: a laser interferometer to detect gravitational waves. JINST 7, P03012 (2012)

    ADS  Google Scholar 

  41. Adrian-Martinez, S., et al.: A first search for coincident gravitational waves and high energy neutrinos using LIGO, Virgo and ANTARES data from 2007. JCAP 1306, 008 (2013)

    ADS  Google Scholar 

  42. Agathos, M., Del Pozzo, W., Li, T.G.F., Broeck, C.V.D., Veitch, J., et al.: TIGER: a data analysis pipeline for testing the strong-field dynamics of general relativity with gravitational wave signals from coalescing compact binaries. Phys. Rev. D89, 082001 (2014)

    ADS  Google Scholar 

  43. Amaro-Seoane, P., Aoudia, S., Babak, S., Binetruy, P., Berti, E., et al.: eLISA/NGO: astrophysics and cosmology in the gravitational-wave millihertz regime. arXiv:1201.3621 [astro-ph], GW. Notes 6, 4–110 (2013)

  44. Andersson, N.: A New class of unstable modes of rotating relativistic stars. Astrophys. J. 502, 708–713 (1998)

    ADS  Google Scholar 

  45. Andersson, N., Jones, D.I., Kokkotas, K.D., Stergioulas, N.: R mode runaway and rapidly rotating neutron stars. Astrophys. J. 534, L75 (2000)

    ADS  Google Scholar 

  46. Ando, S., Baret, B., Bartos, I., Bouhou, B., Chassande-Mottin, E., et al.: Multimessenger astronomy with gravitational waves and high-energy neutrinos. Rev. Mod. Phys. 85, 1401–1420 (2013)

    ADS  Google Scholar 

  47. Apreda, R., Maggiore, M., Nicolis, A., Riotto, A.: Gravitational waves from electroweak phase transitions. Nucl. Phys. B631, 342–368 (2002)

    ADS  Google Scholar 

  48. Aso, Y., et al.: Interferometer design of the KAGRA gravitational wave detector. Phys. Rev. D88(D4), 043007 (2013)

    ADS  Google Scholar 

  49. Astone, P., D’Antonio, S., Frasca, S., Palomba, C.: A method for detection of known sources of continuous gravitational wave signals in non-stationary data. Class. Quantum Grav. 27, 194016 (2010)

    ADS  Google Scholar 

  50. Baiotti, L., Giacomazzo, B., Rezzolla, L.: Accurate evolutions of inspiralling neutron-star binaries: prompt and delayed collapse to black hole. Phys. Rev. D78, 084033 (2008)

    ADS  Google Scholar 

  51. Baret, B., Bartos, I., Bouhou, B., Chassande-Mottin, E., Corsi, A., et al.: Multimessenger science reach and analysis method for common sources of gravitational waves and high-energy neutrinos. Phys. Rev. D85, 103004 (2012)

    ADS  Google Scholar 

  52. Barnes, J., Kasen, D.: Effect of a high opacity on the light curves of radioactively powered transients from compact object mergers. Astrophys. J. 775, 18 (2013)

    ADS  Google Scholar 

  53. Bartos, I., Finley, C., Marka, S.: Observational constraints on multi-messenger sources of gravitational waves and high-energy neutrinos. Phys. Rev. Lett. 107, 251101 (2011)

    ADS  Google Scholar 

  54. Belczynski, K., Bulik, T., Dominik, M., Prestwich, A.: The coalescence rates of double black holes. in Proceedings of the The Rencontres de Moriond and GPhyS colloquium, La Thuile, Italy, 20–27 March 2011, arXiv:1106.0397 [astro-ph] (2011)

  55. Bildsten, L.: Gravitational radiation and rotation of accreting neutron stars. Astrophys. J. 501, L89 (1998)

    ADS  Google Scholar 

  56. Blanchet, L.: Gravitational radiation from post-Newtonian sources and inspiralling compact binaries. Living Rev. Relat. 9, 3 (2006). http://www.livingreviews.org/lrr-2006-4

  57. Bohé, A., Marsat, S., Blanchet, L.: Next-to-next-to-leading order spinorbit effects in the gravitational wave flux and orbital phasing of compact binaries. Class. Quantum Grav. 30, 135009 (2013)

    ADS  Google Scholar 

  58. Briggs, M., et al.: Search for gravitational waves associated with gamma-ray bursts during LIGO science run 6 and Virgo science runs 2 and 3. Astrophys. J. 760, 12 (2012)

    ADS  Google Scholar 

  59. Brustein, R., Gasperini, M., Giovannini, M., Veneziano, G.: Relic gravitational waves from string cosmology. Phys. Lett. B361, 45–51 (1995)

    MathSciNet  ADS  Google Scholar 

  60. Buonanno, A., Maggiore, M., Ungarelli, C.: Spectrum of relic gravitational waves in string cosmology. Phys. Rev. D55, 3330–3336 (1997)

    ADS  Google Scholar 

  61. Buonanno, A., Pan, Y., Baker, J.G., Centrella, J., Kelly, B.J., et al.: Toward faithful templates for non-spinning binary black holes using the effective-one-body approach. Phys. Rev. D76, 104,049 (2007)

    Google Scholar 

  62. Burgay, M., D’Amico, N., Possenti, A., Manchester, R., Lyne, A., et al.: An Increased estimate of the merger rate of double neutron stars from observations of a highly relativistic system. Nature 426, 531–533 (2003)

    ADS  Google Scholar 

  63. Caldwell, R., Allen, B.: Cosmological constraints on cosmic string gravitational radiation. Phys. Rev. D45, 3447–3468 (1992)

    ADS  Google Scholar 

  64. Cameron, P.B., Chandra, P., Ray, A., Kulkarni, S., Frail, D., et al.: Discovery of a radio afterglow following the 27 December 2004 giant flare from SGR 1806–20. Nature 434, 1112–1115 (2005)

    ADS  Google Scholar 

  65. Cavalier, F., Barsuglia, M., Bizouard, M.A., Brisson, V., Clapson, A.C., et al.: Reconstruction of source location in a network of gravitational wave interferometric detectors. Phys. Rev. D74, 082004 (2006)

    ADS  Google Scholar 

  66. Centrella, J.M., Baker, J.G., Kelly, B.J., van Meter, J.R.: The final merger of black-hole binaries. Ann. Rev. Nucl. Part. Sci. 60, 75–100 (2010)

    ADS  Google Scholar 

  67. Chamel, N., Haensel, P.: Physics of neutron star crusts. Liv. Rev. Relat. 11, 10 (2008). http://www.livingreviews.org/lrr-2008-10

  68. Christensen, N.: Measuring the stochastic gravitational radiation background with laser interferometric antennas. Phys. Rev. D46, 5250–5266 (1992)

    ADS  Google Scholar 

  69. Christensen, N.: LIGO S6 detector characterization studies. Class. Quantum Grav. 27, 194010 (2010)

    ADS  Google Scholar 

  70. Christensen, N., Meyer, R.: Markov chain Monte Carlo methods for Bayesian gravitational radiation data analysis. Phys. Rev. D58, 082001 (1998)

    ADS  Google Scholar 

  71. Cornish, N., Sampson, L., Yunes, N., Pretorius, F.: Gravitational wave tests of general relativity with the parameterized post-Einsteinian framework. Phys. Rev. D84, 062003 (2011)

    ADS  Google Scholar 

  72. Corsi, A., Owen, B.J.: Maximum gravitational-wave energy emissible in magnetar flares. Phys. Rev. D83, 104014 (2011)

    ADS  Google Scholar 

  73. Cutler, C.: Gravitational waves from neutron stars with large toroidal B fields. Phys. Rev. D66, 084025 (2002)

    ADS  Google Scholar 

  74. Cutler, C., Schutz, B.F.: The generalized F-statistic: multiple detectors and multiple GW pulsars. Phys. Rev. D72, 063006 (2005)

    ADS  Google Scholar 

  75. Damour, T., Vilenkin, A.: Gravitational wave bursts from cusps and kinks on cosmic strings. Phys. Rev. D64, 064008 (2001)

    MathSciNet  ADS  Google Scholar 

  76. Damour, T., Vilenkin, A.: Gravitational radiation from cosmic (super)strings: bursts, stochastic background, and observational windows. Phys. Rev. D71, 063510 (2005)

    ADS  Google Scholar 

  77. Dimmelmeier, H., Font, J.A., Muller, E.: Relativistic simulations of rotational core collapse. 2. Collapse dynamics and gravitational radiation. Astron. Astrophys. 393, 523 (2002)

    ADS  Google Scholar 

  78. Dupuis, R.J., Woan, G.: Bayesian estimation of pulsar parameters from gravitational wave data. Phys. Rev. D72, 102002 (2005)

    ADS  Google Scholar 

  79. Fairhurst, S.: Triangulation of gravitational wave sources with a network of detectors. New J. Phys. 11, 123,006 (2009)

    Google Scholar 

  80. de Freitas Pacheco, J.A.: Do soft gamma repeaters emit gravitational waves? Astron. Astrophys. 336, 397–401 (1998)

    ADS  Google Scholar 

  81. Friedman, J., Schutz, B.F.: Secular instability of rotating Newtonian stars. Astrophys. J. 222, 281 (1978)

    MathSciNet  ADS  Google Scholar 

  82. Fryer, C.L., New, K.C.: Gravitational waves from gravitational collapse. Living Rev. Relat. 14, 1 (2011). http://www.livingreviews.org/lrr-2011-1

  83. Fryer, C.L., Woosley, S.E., Hartmann, D.H.: Formation rates of black hole accretion disk gamma–ray bursts. Astrophys. J. 526, 152–177 (1999)

    ADS  Google Scholar 

  84. Galama, T., Vreeswijk, P.M., van Paradijs, J., Kouveliotou, C., Augusteijn, T., et al.: Discovery of the peculiar supernova 1998bw in the error box of GRB 980425. Nature 395, 670 (1998)

    ADS  Google Scholar 

  85. Godet, O., Barret, D., Webb, N., Farrell, S., Gehrels, N.: First evidence for spectral state transitions in the ESO243-49 hyper luminous X-ray source HLX-1. Astrophys. J. 705, L109–L112 (2009)

    ADS  Google Scholar 

  86. Goetz, E., Riles, K.: An all-sky search algorithm for continuous gravitational waves from spinning neutron stars in binary systems. Class. Quantum Grav. 28, 215,006 (2011)

    MathSciNet  Google Scholar 

  87. Grishchuk, L.: Amplification of gravitational waves in an istropic universe. Sov. Phys. JETP 40, 409–415 (1975)

    ADS  Google Scholar 

  88. Grossman, D., Korobkin, O., Rosswog, S., Piran, T.: The long-term evolution of neutron star merger remnants—II. Radioactively powered transients. Mon. Not. R. Astron. Soc. 439, 757–770 (2014)

  89. Grote, H., et al.: The GEO 600 status. Class. Quantum Grav. 27, 084003 (2010)

    MathSciNet  ADS  Google Scholar 

  90. Guersel, Y., Tinto, M.: Near optimal solution to the inverse problem for gravitational wave bursts. Phys. Rev. D40, 3884–3938 (1989)

    ADS  Google Scholar 

  91. van Haarlem, M., Wise, M., Gunst, A., Heald, G., McKean, J., et al.: LOFAR: The LOw-Frequency ARray. Astron. Astrophys. 556, A2 (2013)

    Google Scholar 

  92. Harry, G.M.: Advanced LIGO: the next generation of gravitational wave detectors. Class. Quantum Grav. 27, 084,006 (2010)

    MathSciNet  Google Scholar 

  93. Jaranowski, P., Krolak, A.: Data analysis of gravitational wave signals from spinning neutron stars. 3. Detection statistics and computational requirements. Phys. Rev. D61, 062,001 (2000)

    Google Scholar 

  94. Jaranowski, P., Krolak, A., Schutz, B.F.: Data analysis of gravitational-wave signals from spinning neutron stars. 1. The signal and its detection. Phys. Rev. D58, 063001 (1998)

    ADS  Google Scholar 

  95. Kalogera, V., Belczynski, K., Kim, C., O’Shaughnessy, R.W., Willems, B.: Formation of double compact objects. Phys. Rep. 442, 75–108 (2007)

    ADS  Google Scholar 

  96. Kawamura, S., Ando, M., Seto, N., Sato, S., Nakamura, T., et al.: The Japanese space gravitational wave antenna: DECIGO. Class. Quantum Grav. 28, 094011 (2011)

    ADS  Google Scholar 

  97. Kibble, T.: Topology of cosmic domains and strings. J. Phys. A9, 1387–1398 (1976)

    ADS  Google Scholar 

  98. Klimenko, S., Vedovato, G., Drago, M., Mazzolo, G., Mitselmakher, G., et al.: Localization of gravitational wave sources with networks of advanced detectors. Phys. Rev. D83, 102001 (2011)

    ADS  Google Scholar 

  99. Kochanek, C., Beacom, J., Kistler, M., Prieto, J., Stanek, K., et al.: A survey about nothing: monitoring a million supergiants for failed supernovae. Astrophys. J. 684, 1336–1342 (2008)

    ADS  Google Scholar 

  100. Kotake, K.: Multiple physical elements to determine the gravitational-wave signatures of core-collapse supernovae. C. R. Physique 14, 318–351 (2013)

    ADS  Google Scholar 

  101. Kuroda, K.: Large-scale gravitational wave telescope (LCGT). Int. J. Mod. Phys. D20, 1755–1770 (2011)

    ADS  Google Scholar 

  102. Li, T., Del Pozzo, W., Vitale, S., Van Den Broeck, C., Agathos, M., et al.: Towards a generic test of the strong field dynamics of general relativity using compact binary coalescence. Phys. Rev. D85, 082003 (2012)

    ADS  Google Scholar 

  103. Lommen, A.: Pulsar timing arrays. Class. Quantum Grav. 30, 220,301 (2013)

    Google Scholar 

  104. Madau, P., Rees, M.J.: Massive black holes as population III remnants. Astrophys. J. 551, L27–L30 (2001)

    ADS  Google Scholar 

  105. Maggiore, M.: Gravitational wave experiments and early universe cosmology. Phys. Rep. 331, 283–367 (2000)

  106. Mannucci, F., Della Valle, M., Panagia, N., Cappellaro, E., Cresci, G., et al.: The Supernova rate per unit mass. Astron. Astrophys. 433, 807 (2005)

    ADS  Google Scholar 

  107. Mereghetti, S.: The strongest cosmic magnets: soft gamma–ray repeaters and anomalous X-ray pulsars. Astron. Astrophys. Rev. 15, 225 (2008)

    ADS  Google Scholar 

  108. Meszaros, P.: Gamma-ray bursts. Rep. Prog. Phys. 69, 2259–2322 (2006)

    ADS  Google Scholar 

  109. Metzger, B., Giannios, D., Thompson, T., Bucciantini, N., Quataert, E.: The protomagnetar model for gamma-ray bursts. Mon. Not. R. Astron. Soc. 413, 2031–2056 (2011)

    ADS  Google Scholar 

  110. Misner, C., Thorne, K., Wheeler, J.: Gravitation. WH Freeman & Co, San Francisco (1973)

    Google Scholar 

  111. Modjaz, M.: Stellar forensics with the supernova-GRB connection. Astron. Nachr. 332, 434 (2011)

    ADS  Google Scholar 

  112. Nakar, E.: Short-hard gamma-ray bursts. Phys. Rep. 442, 166–236 (2007)

    ADS  Google Scholar 

  113. Nakar, E., Gal-Yam, A., Piran, T., Fox, D.B.: The distances of short-hard GRBs and the SGR connection. Astrophys. J. 640, 849–853 (2006)

    ADS  Google Scholar 

  114. Nissanke, S., Sievers, J., Dalal, N., Holz, D.: Localizing compact binary inspirals on the sky using ground-based gravitational wave interferometers. Astrophys. J. 739, 99 (2011)

    ADS  Google Scholar 

  115. Ott, C.D.: The gravitational wave signature of core–collapse supernovae. Class. Quantum Grav. 26, 063001 (2009)

    ADS  Google Scholar 

  116. Pan, Y., Buonanno, A., Boyle, M., Buchman, L.T., Kidder, L.E., et al.: Inspiral-merger-ringdown multipolar waveforms of nonspinning black-hole binaries using the effective-one-body formalism. Phys. Rev. D84, 124052 (2011)

    ADS  Google Scholar 

  117. Postnov, K., Yungelson, L.: The evolution of compact binary star systems. Living Rev. Relat. 9, 6 (2007). http://www.livingreviews.org/lrr-2006-6

  118. Read, J.S., Baiotti, L., Creighton, J.D.E., Friedman, J.L., Giacomazzo, B., et al.: Matter effects on binary neutron star waveforms. Phys. Rev. D88, 044042 (2013)

    ADS  Google Scholar 

  119. Rezzolla, L., Giacomazzo, B., Baiotti, L., Granot, J., Kouveliotou, C., et al.: The missing link: Merging neutron stars naturally produce jet-like structures and can power short Gamma-Ray Bursts. Astrophys. J. 732, L6 (2011)

    ADS  Google Scholar 

  120. Rowlinson, A., Wiersema, K., Levan, A., Tanvir, N., O’Brien, P., et al.: Discovery of the afterglow and host galaxy of the low redshift short GRB 080905A. Mon. Not. R. Astron. Soc. 408, 383–391 (2010)

    ADS  Google Scholar 

  121. Saulson, P.R.: Gravitational wave detection: principles and practice. C. R. Physique 14, 288–305 (2013)

    ADS  Google Scholar 

  122. Schutz, B.F.: Networks of gravitational wave detectors and three figures of merit. Class. Quantum Grav. 28, 125,023 (2011)

    Google Scholar 

  123. Shibata, M., Taniguchi, K.: Coalescence of black hole-neutron star binaries. Living Rev. Relat. 14, 6 (2011). http://www.livingreviews.org/lrr-2011-6

  124. Sidery, T., Aylott, B., Christensen, N., Farr, B., Farr, W., et al.: Reconstructing the sky location of gravitational-wave detected compact binary systems: methodology for testing and comparison. arXiv:1312.6013 [astro-ph] (2013)

  125. Siemens, X., Mandic, V., Creighton, J.: Gravitational wave stochastic background from cosmic (super)strings. Phys. Rev. Lett. 98, 111101 (2007)

    ADS  Google Scholar 

  126. Slutsky, J., Blackburn, L., Brown, D., Cadonati, L., Cain, J., et al.: Methods for reducing false alarms in searches for compact binary coalescences in LIGO data. Class. Quantum Grav. 27, 165023 (2010)

    ADS  Google Scholar 

  127. Smith, T.L., Pierpaoli, E., Kamionkowski, M.: A new cosmic microwave background constraint to primordial gravitational waves. Phys. Rev. Lett. 97, 021301 (2006)

    ADS  Google Scholar 

  128. Stecker, F., Salamon, M.: High-energy neutrinos from quasars. Space Sci. Rev. 75, 341–355 (1996)

    ADS  Google Scholar 

  129. Tanvir, N., Levan, A., Fruchter, A., Hjorth, J., Wiersema, K., et al.: A “kilonova” associated with short-duration gamma-ray burst 130603B. Nature 500, 547–549 (2013)

    ADS  Google Scholar 

  130. Thrane, E., Christensen, N., Schofield, R.: Correlated magnetic noise in global networks of gravitational-wave interferometers: observations and implications. Phys. Rev. D87, 123009 (2013)

    ADS  Google Scholar 

  131. Ushomirsky, G., Cutler, C., Bildsten, L.: Deformations of accreting neutron star crusts and gravitational wave emission. Mon. Not. R. Astron. Soc. 319, 902 (2000)

    ADS  Google Scholar 

  132. Vilenkin, A., Shellard, E.P.S.: Cosmic Strings and Other Topological Defects. Cambridge University Press, Cambridge (1994)

    MATH  Google Scholar 

  133. Wade, L., Siemens, X., Kaplan, D.L., Knispel, B., Allen, B.: Continuous gravitational waves from isolated galactic neutron stars in the advanced detector era. Phys. Rev. D86, 124011 (2012)

    ADS  Google Scholar 

  134. Was, M.: Searching for gravitational waves associated with gamma-ray bursts in 2009–2010 LIGO-Virgo data. Ph.D. thesis, Université de Paris-Sud (2011)

  135. Watts, A.L., Krishnan, B.: Detecting gravitational waves from accreting neutron stars. Adv. Space Res. 43, 1049–1054 (2009)

    ADS  Google Scholar 

  136. Weisberg, J.M., Nice, D.J., Taylor, J.H.: Timing measurements of the relativistic binary pulsar PSR B1913+16. Astrophys. J. 722, 1030–1034 (2010)

    ADS  Google Scholar 

  137. Will, C.M.: The confrontation between general relativity and experiment. Living Rev. Relat. 9(3) (2006). http://www.livingreviews.org/lrr-2006-3

  138. Zhang, B.: Open questions in GRB physics. C. R. Physique 12, 206–225 (2011)

    ADS  Google Scholar 

  139. Zwart, S.F.P., McMillan, S.L.: The runaway growth of intermediate-mass black holes in dense star clusters. Astrophys. J. 576, 899–907 (2002)

    ADS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support of the United States National Science Foundation for the construction and operation of the LIGO Laboratory, the Science and Technology Facilities Council of the United Kingdom, the Max-Planck-Society, and the State of Niedersachsen/Germany for support of the construction and operation of the GEO600 detector, and the Italian Istituto Nazionale di Fisica Nucleare and the French Centre National de la Recherche Scientifique for the construction and operation of the Virgo detector. The authors also gratefully acknowledge the support of the research by these agencies and by the Australian Research Council, the International Science Linkages program of the Commonwealth of Australia, the Council of Scientific and Industrial Research of India, the Istituto Nazionale di Fisica Nucleare of Italy, the Spanish Ministerio de Economía y Competitividad, the Conselleria d’Economia Hisenda i Innovació of the Govern de les Illes Balears, the Foundation for Fundamental Research on Matter supported by the Netherlands Organisation for Scientific Research, the Polish Ministry of Science and Higher Education, the FOCUS Programme of Foundation for Polish Science, the Royal Society, the Scottish Funding Council, the Scottish Universities Physics Alliance, The National Aeronautics and Space Administration, the Carnegie Trust, the Leverhulme Trust, the David and Lucile Packard Foundation, the Research Corporation, and the Alfred P. Sloan Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie Anne Bizouard.

Additional information

This article belongs to the Topical Collection: The First Century of General Relativity: GR20/Amaldi10. Guest Editors: Jerzy Lewandowski, Bala Iyer, Sheila Rowan.

M.A. Bizouard on behalf of the LIGO Scientific Collaboration and the Virgo Collaboration.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bizouard, M.A. Observational results from the LIGO and Virgo detectors. Gen Relativ Gravit 46, 1763 (2014). https://doi.org/10.1007/s10714-014-1763-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-014-1763-6

Keywords

Navigation