Skip to main content
Log in

Summary of session C9: experimental gravitation

  • Review Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

General relativity (GR) is based on the Universality of Free Fall, the Universality of the Gravitational Redshift, and Local Lorentz Invariance, alltogether called the Einstein Equivalence principle. This implies that gravity has to be described by a metrical theory. Such theories in general give rise to the standard effects like perihelion shift, light deflection, gravitational time delay, Lense-Thirring effect, and the Schiff effect. Only if the underlying theory is Einstein’s GR we have certain values for these effects. GR in turn predicts the existence, certain properties, and a particular dynamics of gravitational waves, black holes, binary systems, etc. which are also subject to experimental/observational proof. This includes practical applications in clock synchronization, positioning, navigation and geodesy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Will, C.M.: Theory and Experiment in Gravitational Physics, revised edn. Cambridge University Press, Cambridge (1993)

    Book  Google Scholar 

  2. Lämmerzahl, C.: Testing basic laws of gravitation—are our postulates on dynamics and gravitation supported by experimental evidence? In: Blanchet, L., Spallicci, A., Whiting, B. (eds.) Mass and Motion in General Relativity, Fundamental Theories of Physics 162, p. 25. Springer, Heidelberg (2011)

    Google Scholar 

  3. Lämmerzahl, C., Perlick, V., Hasse, W.: Observable effects in a class of spherically symmetric static Finsler spacetimes. Phys. Rev. D 86, 104042 (2012)

    Article  ADS  Google Scholar 

  4. Kreuzer, L.B.: Experimental measurement of the equivalence of active and passive gravitational mass. Phys. Rev. 169, 1007 (1968)

    Article  ADS  Google Scholar 

  5. Bartlett, D.F., van Buren, D.: Equivalence of active and passive gravitational mass using the moon. Phys. Rev. Lett. 57, 21 (1986)

    Article  ADS  Google Scholar 

  6. Zoest, Tv, Gaaloul, N., Singh, Y., Ahlers, H., Herr, W., Seidel, S.T., Ertmer, W., Rasel, E., Eckart, M., Kajari, E., Arnold, S., Nandi, G., Schleich, W.P., Walser, R., Vogel, A., Sengstock, K., Bongs, K., Lewoczko-Adamczyk, W., Schiemangk, M., Schuldt, T., Peters, A., Könemann, T., Müntinga, H., Lämmerzahl, C., Dittus, H., Steinmetz, T., Hänsch, T.W., Reichel, J.: Bose–Einstein condensation in microgravity. Science 328, 1540 (2010)

    Article  ADS  Google Scholar 

  7. Müntinga, H., Ahlers, H., Krutzik, M., Wenzlawski, A., Arnold, S., Becker, D., Bongs, K., Dittus, H., Duncker, H., Gaaloul, N., Gherasim, C., Giese, E., Grzeschik, C., Hänsch, T.W., Hellmig, O., Herr, W., Herrmann, S., Kajari, E., Kleinert, S., Lämmerzahl, C., Lewoczko-Adamczyk, W., Malcolm, J., Meyer, N., Nolte, R., Peters, A., Popp, M., Reichel, J., Roura, A., Rudolph, J., Schiemangk, M., Schneider, M., Seidel, S.T., Sengstock, K., Tamma, V., Valenzuela, T., Vogel, A., Walser, R., Wendrich, T., Windpassinger, P., Zeller, W., van Zoest, T., Ertmer, W., Schleich, W.P., Rasel, E.M.: Interferometry with Bose-Einstein condensates in microgravity. Phys. Rev. Lett. 110, 093602 (2013)

    Article  ADS  Google Scholar 

  8. Aguilera, D., Ahlers, H., Battelier, B., Bawamia, A., Bertoldi, A., Bondarescu, R., Bongs, K., Bouyer, P., Braxmaier, C., Cacciapuoti, L., Chaloner, C., Chwalla, M., Ertmer, W., Franz, M., Gaaloul, N., Gehler, M., Gerardi, D., Gesa, L., Gürlebeck, N., Hartwig, J., Hauth, M., Hellmig, O., Herr, W., Herrmann, S., Heske, A., Hinton, A., Ireland, P., Jetzer, P., Johann, U., Krutzik, M., Kubelka, A., Lämmerzahl, C., Landragin, A., Lloro, I., Massonnet, D., Mateos, I., Milke, A., Nofrarias, M., Oswald, M., Peters, A., Posso-Trujillo, K., Rasel, E., Rocco, E., Roura, A., Rudolph, J., Schleich, W., Schubert, C., Schuldt, T., Seidel, S., Sengstock, K., Sopuerta, C. F., Sorrentino, F., Summers, D., Tino, G. M., Trenkel, C., Uzunoglu, N., von Klitzing, W., Walser, R., Wendrich, T., Wenzlawski, A., Weels, P., Wicht, A., Wille, E., Williams, M., Windpassinger, P., Zahzahm, N.: STE-QUEST - Test of the Universality of Free Fall Using Cold Atom Interferometry, arXiv:1312.5980 [quant-ph]

  9. Schubert, C., Hartwig, J., Ahlers, H., Posso-Trujillo, K., Gaaloul, N., Velte, U., Landragin, A., Bertoldi, A., Battelier, B., Bouyer, P., Sorrentino, F., Tino, G.M., Krutzik, M., Peters, A., Herrmann, S., Lämmerzahl, C., Cacciapouti, L., Rocco, E., Bongs, K., Ertmer, W., Rasel, E. M.: Differential atom interferometry with \({}^{87}{{\rm Rb}}\) and \({}^{85}{{\rm Rb}}\) for testing the UFF in STE-QUEST, arXiv:1312.5963 [physics.atom-ph]

  10. Barrett, B., Gominet, P.-A., Cantin, E., Antoni-Micollier, L., Bertoldi, A., Battelier, B., Bouyer, P., Lautier, J., Landragin, A.: Mobile and remote inertial sensing with atom interferometers, arXiv:1311.7033 [physics.atom-ph]

  11. Hohensee, M.A., Chu, S., Peters, A., Müller, H.: Equivalence principle and gravitational redshift. Phys. Rev. Lett. 106, 151102 (2011)

    Article  ADS  Google Scholar 

  12. Wolf, P., Blanchet, L., Bordé, ChJ, Reynaud, S., Salomon, Ch., Cohen-Tannoudji, C.: Atom gravimeters and gravitational redshift. Nature 467, E1 (2010)

    Article  ADS  Google Scholar 

  13. Müller, H., Peters, A., Chu, S.: Reply to: atom gravimeters and the gravitational redshift. Nature 467, E2 (2010)

    Article  Google Scholar 

  14. Wolf, P., Blanchet, L., Bordé, ChJ, Reynaud, S., Salomon, Ch., Cohen-Tannoudji, C.: Does an atom interferometer test the gravitational redshift at the Compton frequency? Class. Quantum Grav. 28m, 145017 (2011)

    Article  ADS  Google Scholar 

  15. Hohensee, M.A., Chu, S., Peters, A., Müller, H.: Comment on ‘does an atom interferometer test the gravitational redshift at the Compton frequency?’. Class. Quantum Grav. 29, 048001 (2012)

    Article  ADS  Google Scholar 

  16. Hohensee, M.A., Estey, B., Hamilton, P., Zeilinger, A., Müller, H.: Force-free gravitational redshift: proposed gravitational Aharonov–Bohm experiment. Phys. Rev. Lett. 108, 230404 (2012)

    Article  ADS  Google Scholar 

  17. Bordé, Ch.J.: Bose-Einstein condensates and atom lasers, C. R. Acad. Sci. Paris 2, Serie IV, 509 (2002)

  18. Chou, C.W., Hume, D.B., Koelemeij, J.C.J., Wineland, D.J., Rosenband, T.: Frequency comparison of two High-accuracy \({\rm Al}^+\) optical clocks. Phys. Rev. Lett. 104, 070802 (2010)

    Article  ADS  Google Scholar 

  19. Bloom, B.J., Nicholson, T. L., Williams, J. R., Campbell, S.L., Bishof, M., Zhang, X., Zhang, W., Bromley, S. L., Ye, J.: An optical lattice clock with accuracy and stability at the \(10^{-18}\) level, arXiv:1309.1137 [physics.atom-ph]

  20. Hinkley, N., Sherman, J.A., Phillips, N.B., Schioppo, M., Lemke, N.D., Beloy, K., Pizzocaro, M., Oates, C.W., Ludlow, A.D.: An atomic clock with \(10^{-18}\) instability. Science 341, 1215 (2013)

    Article  ADS  Google Scholar 

  21. Tobar, M.E., Stanwix, P.L., McFerran, J.J., Guéna, J., Abgrall, M., Bize, S., Clairon, A., Laurent, Ph, Rosenbusch, P., Rovera, D., Santarelli, G.: Testing local position and fundamental constant invariance due to periodic gravitational and boost using long-term comparison of the SYRTE atomic fountains and H-masers. Phys. Rev. D 87, 122004 (2013)

    Article  ADS  Google Scholar 

  22. Delva, P., Meynadier, F., Wolf, P., Le Poncin-Lafitte, C., Laurent, P.: Time and frequency transfer with a microwave link in the ACES/PHARAO mission, arXiv:1206.6239 [physics.space-ph]

  23. Bondarescu, R., Bondarescu, M., Hetényi, G., Boschi, L., Jetzer, Ph, Balakrishna, J.: Geophysical applicability of atomic clocks: direct continental geoid mapping. Geophys. J. Int. 191, 78 (2012)

    Article  ADS  Google Scholar 

  24. Mai, E.: Time, atomic clocks, and relativistic geodesy, DGK, Reihe, A., 124 (Beck, München 2013), URL http://dgk.badw.de/fileadmin/docs/a-124

  25. Falke, St., Lemke, N., Grebing, Ch., Lipphardt, B., Weyers, St., Gerginov, V., Huntemann, N., Hagemann, Ch., Al-Masoudi, A., Häfner, S., Vogt, St., Sterr, U., Lisdat, Ch.: A strontium lattice clock with \(3 \times 10^{-17}\) inaccuracy and its frequency, arXiv:1312.3419 [physics.atom-ph]

  26. Droste, S., Ozimek, F., Udem, Th, Predehl, K., Hänsch, T.W., Schnatz, H., Grosche, G., Holzwarth, R.: Optical-frequency transfer over a single-span 1,840 km fiber link. Phys. Rev. Lett. 111, 110801 (2013)

    Article  ADS  Google Scholar 

  27. Denker, H.: Regional gravity field modeling: theory and practical results. In: Xu, G. (ed.) Sciences of Geodesy-II, Chapter 5, p. 185. Springer, Berlin (2013)

    Chapter  Google Scholar 

  28. Selig, H., Lämmerzahl, C., Ni, W.-T.: Astrodynamical space test of relativity using optical devices I (ASTROD I)—mission overview. Int. J. Mod. Phys. D 22, 1341003 (2013)

    Article  ADS  Google Scholar 

  29. Wu, A.-M., Ni, W.-T.: Deployment and simulation of the ASTROD-GW formation. Int. J. Mod. Phys. D 22, 1341005 (2013)

    Article  ADS  Google Scholar 

  30. Lucchesi, D.M., Peron, R.: Accurate measurement in the field of the earth of the general-relativistic precession of the LAGEOS II pericenter and new constraints on non-Newtonian gravity. Phys. Rev. Lett. 105, 231103 (2010)

    Article  ADS  Google Scholar 

  31. Bosi, F., Cella, G., Di Virgilio, A., Ortolan, A., Porzio, A., Solimeno, S., Cerdonio, M., Zendri, J.P., Allegrini, M., Belfi, J., Beverini, N., Bouhadef, B., Carelli, G., Ferrante, I., Maccioni, E., Passaquieti, R., Stefani, F., Ruggiero, M.L., Tartaglia, A., Schreiber, K.U., Gebauer, A., Wells, J.-P.R.: Measuring gravitomagnetic effects by a multi-ring-laser gyroscope. Phys. Rev. D 84, 122002 (2011)

    Article  ADS  Google Scholar 

  32. Müller, J., Biskupek, L., Hofmann, F., Mai, E.: Lunar Laser Ranging and Relativity, in S. Kopeikin (ed.) Frontiers in Relativistic Celestial Mechanics, (deGruyter, in press 2014)

  33. Breton, R.P., Kaspi, V.M., Kramer, M., McLaughlin, M.A., Lyutikov, M., Ransom, S.M., Stairs, I.H., Ferdman, R.D., Camilo, F., Possenti, A.: Relativistic spin precession in the double pulsar. Science 321, 104 (2008)

    Article  ADS  Google Scholar 

  34. Freire, P.C.C., Wex, N., Esposito-Farèse, G., Verbiest, J.P.W., Bailes, M., Jacoby, B.A., Kramer, M., Stairs, I.H., Antoniadis, J., Janssen, G.H.: The relativistic pulsar-white dwarf binary PSR J1738+0333 II. The most stringent test of scalar-tensor gravity. MNRAS 423, 3328 (2012)

    Article  ADS  Google Scholar 

  35. Antoniadis1, J., Freire, P.C.C., Wex, N., Tauris, T.M., Lynch, R.S., van Kerkwijk, M.H., Kramer, M., Bassa, C., Dhillon, V.S., Driebe, T., Hessels, J.W.T., Kaspi, V.M., Kondratiev, V.I., Langer, N., Marsh, T.R., McLaughlin, M.A., Pennucci, T.T., Ransom, S.M., Stairs, I.H., van Leeuwen, J., Verbiest, J.P.W., Whelan, D.G.: A massive pulsar in a compact relativistic binary. Science 340, 6131 (2013)

    Google Scholar 

  36. Barker, B.M., O’Connell, R.F.: Nongeodesic motion in general relativity. Gen. Relativ. Gravit. 5, 539 (1974)

    Article  ADS  Google Scholar 

  37. Barker, B.M., O’Connell, R.F.: Gravitational two-body problem with arbitrary masses, spins, and quadrupole moments. Phys. Rev. D 12, 329 (1975)

    Article  ADS  Google Scholar 

  38. Everitt, C.W.F., DeBra, D.B., Parkinson, B.W., Turneaure, J.P., Conklin, J.W., Heifetz, M.I., Keiser, G.M., Silbergleit, A.S., Holmes, T., Kolodziejczak, J., Al-Meshari, M., Mester, J.C., Muhlfelder, B., Solomonik, V.G., Stahl, K., Worden, P.W., Bencze, W., Buchman, S., Clarke, B., Al-Jadaan, A., Al-Jibreen, H., Li, J., Lipa, J.A., Lockhart, J.M., Al-Suwaidan, B., Taber, M., Wang, S.: Gravity probe B: final results of a space experiment to test general relativity. Phys. Rev. Lett. 106, 221101 (2011)

    Article  ADS  Google Scholar 

  39. Zakharov, A.F., de Paolis, F., Ingrosso, G., Nucita, A.A.: Shadows as a tool to evaluate black hole parameters and a dimension of spacetime. N. Astron. Rev. 56, 64 (2012)

    Article  ADS  Google Scholar 

  40. Borka, D., Jovanoviĉ, P., Borka, Jovanoviĉ V., Zakharov, A.F.: Constraints on \(R^n\) gravity from precession of orbits of S2-like stars. Phys. Rev. D 85, 124004 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We would like to thank the center of excellence QUEST for support. C.L. also would like to acknowledge the support of the DFG funded Research Training Group 1620 “Models of Gravity”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claus Lämmerzahl.

Additional information

This article belongs to the Topical Collection: The First Century of General Relativity: GR20/Amaldi10.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lämmerzahl, C., Müller, J. Summary of session C9: experimental gravitation. Gen Relativ Gravit 46, 1701 (2014). https://doi.org/10.1007/s10714-014-1701-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-014-1701-7

Keywords

Navigation